PROCOMM. PLUS

ASPECT Script Language Reference Manual

January 1991

© 1987/1990 DATASTORM TECHNOLOGIES, INC. All rights reserved.

No part of this manual may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language (natural or computer), in any form or by any means,
without the prior written permission of DATASTORM TECHNOLOGIES,
INC.

You are granted a limited license to use the software described in
this manual. The software may be used or copied only in
accordance with the terms of that license, which is described
beginning on the next page.

Information in this manual is subject to change without notice and
does not represent a commitment on the part of DATASTORM
TECHNOLOGIES, INC.

DATASTORM TECHNOLOGIES, INC., may make improvements and/or
changes in this manual and/or in PROCOMM PLUS at any time.

PROCOMM, PROCOMM PLUS, the PROCOMM PLUS “wavy line design”
logo, Intuitive Communications, DATASTORM and the DATASTORM logo
are registered trademarks of DATASTORM TECHNOLOGIES, INC. The
File Name Clipboard is a trademark of DATASTORM TECHNOLOGIES,
INC.

Throughout this manual are commercial names of products made
by other manufacturers or developers. Many of these product
names are either registered or unregistered trademarks of their
manufacturers or developers. The owners of these trademarks have
never expressed any approval or disapproval of DATASTORM
products.

DATASTORM's Technical Support Department will be happy to
answer questions about the use or syntax of any ASPECT
command or feature. We cannot, however, offer advice on how to
write or debug your scripts. We have tried to include as many
programming hints and examples as possible in the ASPECT
SCRIPT LANGUAGE REFERENCE MANUAL, and we will continue to
supply a wide variety of sample scripts both on CompuServe and
on our in-house BBS.

Contents

Chapter 1: Introduction 1
OVEIVIEW rrsrrsnirenmnstsrsssinsarssnissssssenssssssssssesssesssssmsassresssssss ssssssnas 2
ASPECT Command Words and Their Uses.......oooursesrsineans 3

33073770) (117 RO O, 3
Program Control ... sssssssssssssnsssesens 3
String Manipulation ..., 4
INPUE]OUBPUL cvvev et s s osssrssmsssssseras 5
Terminal Key EGUITAIENTES.....uueceeeeceeiiecscnictse s 7
Display and SOUNHuoeeevrvmeevnrincersresssnnirescsncssssnse s snns 8
Directory and File COErol....vmsivimmnreriesmsssssones 9
Conversion COMMANGSeeevieecrrcrniie et sinssessses 10
Arithmetic COMMANGS ..c.oceveeeerereeereeersenrrecsessseesassssesenesenes 10
Memory Manipulation........ i 12
System, Date and Time Commandsovevuecveveeresinnnn. 12
Terminal Emulation Commands ... 12
Miscellaneous COMMANAS ..uvvvscrensressrsssmssssssesassssssesssessnes 13
Using ASPCOMP ...t sm s nannaens 14
Running Compiled SCTIpS...cuvmvniiscscsnsiiessisesesessssns 15
Key Processing it ASPECT ...ueviveresresienssssssensnnans 16

Chapter 2: ASPECT Script Reference 17
OVEIVIEW curerrrernsesimsssesssererssimsssasessssssmsssssssssssssssssssressssmsessssmsnes 23
The Elements of ASPECTccocicimcesmsissmssnsesmesssssessisans 24

Naming Elements it ASPECT ..iinnscsnisssssssissnsas 24
Commuand Words and Parameters ... eveererencrcsienes 25
O 1 26
Predefined Variables. ... 26
System Variables ... 26
User-defined Variables ... 27
User-defined Constants.......ovmenvcnsmesismisnnssssron 27
Global and Local Variables........uwreeennecsrmmsiseseesessressons 28

ESCAPE SEGUETICES ovivirvrrsrerrarsmmrssssssassssmmsressssssenssssssssssssass 28

CONTENTS

Character COHSHANES uuueriiiiisssssssissasesssssssesssassssasssssssssnssadd

Labels and Proceduresvmvrmciresivesivessessssissssesssssssenss 29
ASPECT Conventions.....imssmsrsisssessssssescsessssnsies 30
A Note 01 EXAMPIES..cuvrirrvirersmssrerssssassssssissssssrasssessssnsis 34
Using Remote ASPECT Commands........couvevenscsisssssssasanees 34
The ASPECT Command Listing ...c.cocvesvvmeniinicsenainennen, 35
Systerm Variables .. nesssisnses 190
Chapter 3: Compiling ASPECT 195
OVEIVIEW cvrrerressnsisisisssssssse s nmsrsssssssssbsssssssssssnsssensssssssasersass 196
ASPCOMP Technical NOLESvivnmrmremmmsiscsssssessssssssncass 197
The Compilintg ProCess cu.u..vmmermsvssisssssmsssssssssessenssmsassosons 197
Using a Symbol Map and Line Referencevresesenne. 197
Upgrading Scripts from PROCOMM PLUS 1.X...ccoouerneunnn 198
Using CONVERT c....oormmrrarissssssrssssssassssssssssssassasssisssasss 198
Writing Scripts for EffiCiency ... eecscecrecncisissians 203
Chapter 4: Common ASPECT Questions 209
OVEIVIEW cuvrerresssssssnsssmssssscsmmsssesssssssssssssmssssmsasssassmssssssassasssssss 210
ASPECT Variables.....coucuuimismsmasmnesssssssssssisasassassassesss 211
File INPUt/OUEPUL crvurrererserrsssissssssssiassnmesirsesnnsensscsssssssssaans 213
DASPIAY 1 1vvsssrsssmssmsmasmmssnensssssssssssssossssessssssasasmssssssssssssssassssasases 214
Connecting to a Remote System ..viimeninninercessiens 215
Accessing DOS...cvuisirsesmimmssssesnansssssssssssssssssssssmssssasesss 216
TransferTing FIlesosmrrerveecsmmsecsnsssssssssssnsssnssmssnsseseses 217
DEDUGZINZ ceucviressserssrsssssmemssnssmrsessssssssessssnemsessasssmasssnsssssissssasess 217
Chapter 5: Advanced ASPECT Examples 9
OVEIVIEW trvsriiiiisinmiseiisssssssisssseesssssssssssnsmssmsnssssststsbtstssissmnssas
Remote Commands and String Manipulation........cceeew 220
Host Mode External Processing and File I/0.....ccccevvnnn, 221
Appendixes 227
Appendix A: PCEDIT Technical Notes...wiceserens ST— 229
Appendix B: Compiler and Run-Time EITorsccevseeuese crenesas 233
Appendix C: Reserved WOrds ... 243
Appendix D: Operators wuiemamsasassssamsmasnsmess Y.Ly |

Index 253

CHAPTER

1

Introduction

OVEIVIEW crcresirce st ns e s sn s caneses b e esaneases 2
ASPECT Command Words and Their Uses........cocoucniiresinenss 3
BIanching c.ueimessm s s sns s sssssvssssssss 3
Program Control ... 3
String MAnipulationcvcveeeensiesvmssrvssessssrssenesss 4
Input/QUIPUL v]
Terminal Key EGUIDAIENTS..vuvvveivninnsisiisnnssisasssssnsnans 7
Display and SoUnd ... s 8
Directory and File Control..... . 9
Conversion COMIMANGScocuevrrcrismensiesnsissiesisssissssssssrssnes 10
Arithmetic COMMANAS ..vevvveeieieseeriersrseii s eseeines 10
Memory Manipulationveeccrescsrs e eeneveseeanes 12
System, Date and Time COMmandscvumurirsrscerenernsns 12
Terminal Emulation COmmands.......eiersronsrinsessns 12
Miscellaneous Commands..uimemnsiesssssnssnessesssssans 13
Using ASPCOMP ...vuveerismressssessnesmnasmssssssssasasssssssssssssenssssasssnas 14
Running Compiled SCrIptS....couvcerirvivinriisicssensessanans 15

Key Processing it ASPECT ...vwvvvvensvsssmssssnssssssssenssses 16

ASPECT SCRIPT LANGUAGE REFERENCE

Overview

This book was specifically designed as a companion to the
PROCOMM PLUS USER MANUAL; it assumes that you already have
experience in programming, and therefore does not attempt to
teach the basics of writing a program. You’ll find basic information
on ASPECT and how to apply it in your USER MANUAL.

Instead, this reference provides the ASPECT programmer with
detailed information on each script component and the ASPCOMP
compiler. For your convenience, each chapter handles a separate
topie:

The rest of this chapter arranges the ASPECT command words into
functional “groups”—a group contains commands with similar
functions, syntax or usage. Additionally, we'll briefly introduce the
PROCOMM PLUS script compiler.

Chapter 2 is an alphabetized description of each command. We'll
also cover the basic syntax and conventions of an ASPECT script.

Chapter 3 provides more details on using the compiler—in
particular, how to upgrade scripts you've written for earlier
versions of PROCOMM PLUS.

Chapter 4 presents the most commonly-asked ASPECT questions.
We'll provide possible solutions and example scripts that you can
include in your own programming.

Chapter 5 is devoted to the expert ASPECT user! This chapter
presents two advanced script examples (demonstrating external
Host programming and remote commands).

Finally, at the back of the manual you'll find complete technical
information (including error messages, the PCEDIT text editor and a
complete ASPECT index).

You'll notice that each chapter begins with an Overview (like this
one), which will introduce the topics to be discussed and the
purpose of that chapter. Use these "road signs" to identify both the
chapters you need to read and those that you can skip.

Introduction

ASPECT Command Words and Their Uses

The most commonly-used ASPECT commands are listed below,
grouped according to function. You'll find complete details about
every command in Chapter 2 of this manual.

Branching

CALL Passes control to another procedure; control
returns to the subsequent command.

EXECUTE Passes; control to another script file, but
doesn’t allow a return.

COSUB A synonym for CALL.

GOTO Provides an unconditional branch or jump to
a label within the current procedure.

Returns control directly to a location

LONGJMP

] previously “marked” with the SETJMP
command.

SETJMP Creates a location within a program that can
be returned to immediately with the LONGMP
command.

Program Control

BYE Terminates the executing script file and exits
PROCOMM PLUS (leaving the connection open).

CWHEN Deactivates an active WHEN command.

DEFINE Substitutes a text string or allows conditional
processing during compilation.

EXIT Exits the script file and returns to Terminal
mode.

FOR Repeats a command or series of commands
(up to the ENDFOR command) a specified
number of times.

IF Defines command execution (up to the ENDIF
command) as dependent on a specified
condition or event.

ASPECT SCRIPT LANGUAGE REFERENCE

MSPAUSE

PAUSE

PROC

QUIT

SWITCH

SUSPEND UNTIL
TERMINAL

WAITFOR

WAITQUIET

WHEN

WHILE

Halts execution for a specified number of
milliseconds.

Halts execution for a specified number of
seconds.

Marks the beginning of an ASPECT procedure
block (which is terminated with an ENDPROC
command).

Terminates a script and exits from PROCOMM
PLUS.

Executes commands on the results of
comparisons between a variable and a series
of CASE values.

Halts script execution until a given time.

Terminates a script and returns the system to
Terminal mode.

Halts execution until a specified string is
received or until a specified length of time
elapses.

Halts execution for a specified time until the
receive data line has been inactive for a
certain number of seconds.

Forces an aufomatic response or CALLs a
procedure when a particular target string is
encountered.

Repeats a block of commands (terminated
with an ENDWHILE command) until a
condition is "FALSE".

String Manipulation

ASSIGN

FIND

RSTRCMP

STRCAT

STRCMP

Assigns a text string or another string variable
to a string variable.

Tests for an occurrence of the specified text
within a variable.

Compares two strings and sets the SUCCESS
flag to “TRUE” if the strings are identical.
Unlike STRCMP, the strings can contain non-
displayable characters.

Concatenates one string variable or quoted
string to another string variable.

Compares two strings and sets the SUCCESS
flag to “TRUE” if the strings are identical.

STRCPY

STRFMT

STRLEN
STRLWR
STRPEEK

STRPOKE
STRSET

STRUPDT
STRUPR

SUBSTR

Input/Output

ATGET
ATSAY

COMGETC

COMGETCD

COMPUTC

EOF
FATSAY

Introduction

Assigns a string variable or quoted string to
another string variable. This command is the
same as ASSIGN.

Creates a formatted string using a template
and modifies it with string or numeric
variables.

Returns the length of a string or string
variable into an integer variable.

Converts the contents of a string variable to
all lowercase characters.

Reads a byte in a string and placesitina
specified integer variable.

Sets a byte in a string to a specified value.
Initializes a string variable with a specified
value (between 0 and 255) up to a designated
length.

Overwrites one or more bytes in a string with
a new string value.

Converts the contents of a string variable to
all uppercase characters.

Extracts a new string from an existing quoted
string or a string variable.

Gets a string or numeric value using specified
attributes at a specified row and column.
Displays a string or number in the specified
colors at a location on the screen.

Assigns a numeric variable with the next
character in the receive data buffer. Returns a
“-1” if the buffer is empty.

Similar to COMGETC, this command will wait
up to two seconds for a character before
returning a value.

Sends the specified character out the active
communications port.

Tests for end-of-file condition.

Displays a formatted string at the specified
location and with the specified color
attributes.

ASPECT SCRIPT LANGUAGE REFERENCE

FCLEAR

FCLOSE
FFLUSH

FGETC

FGETS
FOPEN

FPUTC

FPUTS

FREAD

FSEEK
FSTRFMT

FTELL

FWRITE

GET
INPORT

KEYGET

KFLUSH
MATGET

MESSAGE

MGET

OUTPORT

Clears all end-of-file and error flags for the
input file.
Closes a file.

Writes the current I/Q buffer contents to the
output file.

Reads a character from input file into an
integer variable,

Reads a string from input file into a variable.

Opens a file in read, write or append mode
and assigns it to a file index.

Writes the character represented by an integer
to the output file.

Writes the contents of a string variable to the
output file.

Reads a block of data from the input file into a
string variable.

Repositions the file pointer.

Similar to STREMT and FATSAY; writes a
formatted string to the output file.

Returns the current file position into a long
variable.

Writes a block of data from a string to the
output file.

Stores the user input in a string variable.

Reads data from a specified I/O port into an
integer variable.

Reads a keystroke and optionally places the
value into a numeric integer variable.

Clears the keyboard buffer.

Positions the cursor at a row and column and
gets a string or numeric value using the
specified attributes; the input is masked with
asterisks on the screen.

Displays a specified string on the local screen
at the current cursor position.

Stores user input in a string or numeric
variable. The display is masked with asterisks
to provide security.

Writes integer data fo a specified I/O port.

PUSHBACK

REWIND

RDFLUSH
RFLUSH
RGET

RDWRITE
TERMWRT

TRANSMIT

WRITEC

Introduction

"Pushes" the last character read from the
receive data buffer back to the head of the
buffer.

Repositions the file pointer back to the
beginning of the file and clears the end-of-file
and error flags for the file.

Clears the Redisplay buffer.
Clears the receive data buffer.

Receives a text string sent by a remote user
and stores it in a string variable.

Writes the Redisplay buffer to disk.

Displays the character represented by a value
at the current cursor position and then moves
the cursor to the next available location.
Unlike WRITEC, no conversion is performed
on the value.

Sends the specified string to a remote
computer.

Performs emulation conversion and then
displays or acts on the provided character
value, The cursor is updated when
appropriate.

Terminal Key Equivalents

BREAK

CONNECT
DIAL
DLOAD
EMULATE
FETCH

GETFILE

HANGUP
HELP
HOST

KEERMSERVE

KLOAD

Sends a break of specified length o a remote
computer.

Exits a script and returns to Terminal mode.
Dials a dialing directory entry.

Loads a different dialing directory.

Sets the terminal type of the local system.

Returns the current value of any SET
command parameter.

Receives a file from a remote computer using
the specified protocol.

Disconnects the line, ending a call.
Calls the Online Help Facility.

Enters Host Mode, where PROCOMM PLUS acts
as a BBS.

Executes the specified KERMIT server
command.

Loads or creates a Keymap file.

ASPECT SCRIPT LANGUAGE REFERENCE

LOG Enables logging of all data sent and received
in Terminal mode to a disk file.

METAKEY Executes the specified keyboard Meta key.

MDIAL Dials a specified telephone number (unlike
DIAL, which calls a Dialing Directory entry).

MLOAD Loads or creates a keyboard Meta key file.

PARMREST Restores the PROCOMM PLUS parameter
settings from the PCPLUS.PRM file.

PARMSAVE Saves the current parameter settings to the
PCPLUSPRM file (overwriting the previous
settings).

PRINTER Turns the printer on or off.

REDIAL Redials numbers in the dialing queue.

SET Sets the specified parameter to a specific
value.

SENDFILE Sends a file to a remote computer using the
specified protocol.

SNAPSHOT Copies the contents of the current screen to
the disk file PCPLUS.SCR.

TERMKEY Accepts a value representing a key and
performs a program function.

Display and Sound

ALARM Sounds an alarm for a specified number of
seconds.

BOX Displays a bordered box of the specified size
and color.

CLEAR Clears the screen.

CUROFF Turns the cursor off.

CURON Turns the cursor on.

Scrolls a specified area of the screen down by

DSCROLL
the specified number of lines.

GETCUR Returns the cursor’s current row and column
into numeric variables.

GETVATTR Returns the current display attribute from the
specified screen coordinates into a numeric
variable.

GETVCHAR Returns the current character from the

specified screen coordinates into a numeric
variable.

Introduction

LOCATE Places the cursor at a specific location.

PUTVATTR Selects the current display attribute for the
specified screen coordinates.

PUTVCHAR Places_ a character at the specified screen
coordinates.

SCROLL Scrolls a specified area of the screen up by the
specified number of lines.

SOUND Makes a sound of a given frequency (in
Hertz) and duration (in hundredths of a
second).

TYPE Displays the specified ASCI text file.

VIDREST Restores the current video buffer data.

VIDSAVE Saves the current video buffer data.

Directory and File Control

CHDIR Changes the current DOS directory.

DELETE Erases a file.

DIR Displays a list of files.

Returns the free space available on the

DISKEREE specified drive into a long variable.

FINDFIRST Locates a file (or files) with a file specification
you provide.

FINDNEXT Locates the next occurrence of a file which
matches a previous FINDFIRST command.

GETDIR Returns the current working directory path of
the specified drive into a string variable.

GETFATTR Returns the atiributes of a speaﬂed fileinto a
string variable.

GETFDATE Returns the date stamp of a specified file into
a string variable.

GETESIZE Returns the size (in bytes) of a specified file
into a long variable.

GETFTIME Returns the time stamp of a specified file into
a string variable.

ISEILE Determines if a file is present in the current
DOS directory.

MKDIR Creates a new directory using a specified path

(or in the current directory if a path is not
provided).

ASPECT SCRIPT LANGUAGE REFERENCE

10 »

RENAME

RMDIR

SETFATTR
SETFDATE
SETFTIME

Renames an existing file using specified paths
(or the current directory). Files can be
"moved" by renaming them to a different
directory on the same drive.

Removes an existing directory using a
specified path (or in the current directory if a
path is not provided).

Sets the attributes of a specified file.

Sets the date stamp of a specified file.

Sets the time stamp of a specified file.

Conversion Commands

ATOF

ATOI

ATOL

FTOA

ITOA

KEY2ASCII

LTOA

Converts an ASCII numeric string to a float
value.

Converts an ASCI numeric string to an integer
value.

Converts an ASCII numeric siring to an long
value.

Converts a float to an ASCII string and stores it
in a string variable.

Converts an integer o an Ascll string and
stores it in a string variable.

Converts an integer to its ASCII character
value and places the result into a string
variable. ‘

Converts a long to an ASCII string and stores it
in a string variable.

Arithmetic Commands

ADD

AND

ANDL

CEIL

Adds two numbers or numeric variables and
places the result in a numeric variable.

Performs a bitwise comparison of two
numbers and places the result in the specified
numeric variable.

Performs a logical AND comparison of two
numbers and places the result in the specified
numeric variable.

Computes the smallest integer value greafer
than or equal fo a floating point number you
provide.

COMP

DEC
DIV

EQ
FLOOR

GE

GT
INC

LE
LT
MOD

MUL

NEG

NEQ
NOT

OR

ORL

SHL

SHR

SUB

XOR

Introduction

Performs a bitwise complement of a number
and places the result in the specified numeric
variable.

Decrements a numeric variable by one.

Divides one number by another and places
the result in a numeric variable.

Performs equality test on two numbers.

Computes the largest integer value less than or
equal to a floating point number you provide.

Performs a greater-than-or-equal-fo
comparison.

Performs a greater-than comparison.
Increments a numeric variable by one.

Sets the value of a specified numeric variable.
Performs a less-than-or-equal-to comparison.
Performs a less-than comparison.

Returns the remainder left after the division
of two numbers into a numeric variable.

Multiplies two numbers or numeric variables
and store the result in a numeric variable.

Negates the value of the specified number
and places the result in a numeric variable.

Performs inequality test on two numbers.

Performs a logical NOT operation on a
number.

* Performs a bitwise comparisen of two

numbers.

Performs a logical OR comparison on two
numbers.

Performs a left shift operation on the bits of
one number and places the result in the
specified numeric variable.

Performs a right shift operation on the bits of
one number and places the result in the
specified numeric variable.

Subtracts one number or numeric variable
from another and store the result in a numeric
variable,

Performs a bitwise comparison of two
numbers.

w 11

ASPECT SCRIPT LANGUAGE REFERENCE

12 =

ZERO Compares a number with zero.

Memory Manipulation

MEMEREE Returns the free RAM available for running
other programs into a long variable.

MEM Returns the value of a single byte at the

PEEK specified segment address and offset.

MEMPOKE Sets the value of a single byte at the specified
segment address and offset.
Places the values of several bytes at the

MEMREAD specified memory segment address and offset
into the specified string variable.

MEMWRITE Writes the contents of a string at the specified

memory segment address and offset.

System, Date and Time Commands

DATE

DOS

DOSVER

GETENV

HOOK

PUTENV

RUN
SHELL

TIME

Loads current system date into a string
variable.

Executes the specified DOS command or
batch file.

Returns the current DOS version (with major
and minor version numbers) into a string
variable.

Reads the contents of an environment
variable definition into a string variable.

Executes an external program, passing the
segment and offset of the current PROCOMM
PLUS Setup structure as an argument.

Adds or modifies an environment variable.
Executes the specified program or command.

Temporarily exits to DOS (leaving PROCOMM
PLUS loaded in memory).

Loads the current system time into a string
variable.

Terminal Emulation Commands

BLANKON

BLINKON
BOLDON
CURDN

Sets the foreground equal to the background
attribute.

Turns on the blinking attribute.
Turns on the bold attribute.
Moves the cursor down one line.

CURLF

CURRT
CURUP
DELCHAR

DELLINE

DIMON
EBOL

EBOS

EEOL

EEOS

HOME

INSCHAR

INSLINE

LINEFEED
NORMON
RCA

REVON

TERMRESET

ULINEON

Introduction

Moves the cursor one column to the left.
Moves the cursor one column to the right.
Moves the cursor up one line.

Deletes the character at the current cursor
position.

Deletes the entire line at the current cursor
position.

Turns on the dim attribute.

Erases text from the current cursor position to
the beginning of the line.

Erases text from the current cursor position to
the beginning of the screen.

Erases the line under the current cursor
position.

Erases text from the current cursor position to
the end of the screen.

Moves the cursor to the first row and column
on the screen.

Inserts a character at the current cursor
position.

Inserts a new line at the current cursor
position.

Moves the cursor down one line.
Turns on the normal attribute.

Interprets the next two received characters as
row and column positions for the cursor.

Turns on the reverse attribute.
Resets Terminal mode.
Turns on the underline attribute.

Miscellaneous Commands

COMMENT

ENDCOMMENT

INCLUDE

Designates the beginning of a comment block.
Any characters from this command to the
ENDCOMMENT command following it will not
be included in the compiled code.

Terminates a COMMENT block.

Merges commands from other source files
during compilation.

r® 13

R W Ty

ASPECT SCRIPT LANGUAGE REFERENCE

Using ASPCOMP

4 =

Like many other programming languages, ASPECT allows you to
“compile” your programs.

During this process, the commands, data and text contained in an
ASPECT Source Program (or .ASP file) are reduced from their full-
length English format into code that PROCOMM PLUS can read
directly. Strings are also encrypted for security.

After compiling, the resulting ASPECT Script Executable (or .45X file)
is smaller in size and takes less time to run. Additionally, since the
string data is encrypted, it's much more secure—no one can read
sensitive passwords or information!

You can compile a script in two ways:

o First, you can compile scripts ahead-of-time, before running
PROCOMM PLUS. This method is faster, and it requires less
memory. However, if you make frequent changes to a script,
you’ll have to recompile each time you modify it.

e Alternately, PROCOMM PLUS can automatically load the compiler
and attempt to compile the script when you run it. This method
is more convenient for those users who modify their scripts
often, since the intermediate compile step is automatic;
however, if PROCOMM PLUS doesn’t have enough free RAM
memory to load ASPCOMP, the compile process will abort.

Whenever PROCOMM PLUS prompts you for a script name, you can
“force” it to recompile a source program by typing in the entire
script name (including the .ASP extension). If the script name has
no extension, PROCOMM PLUS will attempt to execute a compiled
script with that name first; if no such script exists, PROCOMM PLUS
assumes that the file is a source program (which must be compiled
before execution).

You can run ASPCOMP from the DOS prompt:
o Type ASPCOMP [options] scriptname and press (Enter) .
The scriptname can include a path.

The options are:

Defines a macro x. This symbol can also be
initialized to a text string (similar to a macro
in the “C” programming language). For more
information on ASPECT macros and their uses,
refer to the DEFINE command in the next
chapter.

Mx[=text]

Introduction

/MIL] Generates a symbol map for this script
(including any compiler warning messages).
The L switch creates an additional source line
number reference table.

/En Determines the maximum errors to allow
before aborting the compilation; if more than
n errors are found by ASPCOMP, it will abort
automatically. The default is 20 errors.

Wo Specifies the warning level for this
compilation; warnings may indicate a
potential problem in the source script. Unlike
errors, however, warnings aren’t considered
“fatal”; the compiling process will not abort
because of a warning. Valid values are 0, 1
and 2. At level 0, ASPCOMP suppresses all
warning messages. At level 1 (the default),
unreferenced global, local and parameter
variables are reported. Level 2 reports all
level 1 errors and additionally reports the
names of “unreferenced” procedures as
they’re removed by the compiler
(unreferenced procedures aren’t CALLed
anywhere within the source script, so they're
effectively useless).

Spaces are required between options.

Running Compiled Scripts

To illustrate the use of ASPCOMP, let’s create a simple ASPECT source
program in the PCPLUS directory called “TINY.ASP”—its sole
purpose is to display the sentence “Hello, I'm a compiled ASPECT
script!” in the center of your screen. Our TINY.ASP looks like this:

PROC MAIN ;initialize the MAIN procedure
CLEAR ;clear the screen
FATSAY 12 20 31 "Hello, 'm a compiled ASPECT script!"
ENDPROC send the MAIN procedure

Now we'll compile and run TINY.ASP from within PROCOMM PLUS.
From Terminal mode, the process would be:

o Press(An}HF5)to run a script.

e PROCOMM PLUS prompts you for the name of the script—enter
TINY and press .

Since there is no file named “TINY.ASX”, PROCOMM PLUS assumes
that the script is in source program form (and that it must be
compiled before use). You'll see a message alerting you that the
script is being compiled, and then the new TINY.AsX will run.

x 15

ASPECT SCRIPT LANGUAGE REFERENCE

I »

Once you exit from PROCOMM PLUS, you’ll note that TINY.ASX was
saved as a separate file.

To compile TINY.ASP outside of PROCOMM PLUS, the process (from
the DOS promnt) would be:

o Type ASPCOMP TINY and press (Enter] .

Whichever method you use to compile TINY.ASX, you'll notice that
it’s smaller than TINY.ASP by several bytes (of course, the larger the
source program, the more bytes you'll save by compiling it). If you
view TINY.ASX within PROCOMM PLUS, you’ll also see that it's now
tokenized (making it impossible for someone else to “decode” any
of the data strings within TINY.ASX).

Key Processing in ASPECT

PROCOMM PLUS allows you to enter keystrokes while a script is
executing. By default, the program checks for an available key
before each command is executed; if was pressed, PROCOMM
PLUS asks you whether or not to terminate the current script. Any
other key will be processed exactly as if it were typed in Terminal
mode; for example, if you press » the Upload Protocol
window is displayed. If the letter (A)is pressed, it's sent out the
active COM port.

Certain ASPECT commands can be terminated by (Ese) ; they require
a period of time to pass before the command would normally
complete (for example, PAUSE, RGET, SUSPEND UNTIL, WAITFOR and
WAITQUIET). The GET-style commands (ATGET, GET, MATGET and
MGET) can also be aborted by . When any of these commands
are terminated with , the FAILURE flag is set and PROCOMM PLUS
asks you whether or not to terminate the current script.

The SET KEYS command can be set ON to change the way keys are
processed in a script. (Esc)will still terminate some commands (as
mentioned above); however, the termination prompt is suppressed,
and it’s the script’s responsibility to process both the abnormal
termination of commands and keystrokes entered by the user. You
can use commands like KEYGET and TERMKEY to monitor this
processing.

The next chapter will describe each ASPECT command in-depth,
along with the basic syntax and conventions used by ASPECT
programmers.

CHAPTER

ASPECT ScriEt Reference

L0105 o 1= O R 23
The Elements of ASPECTcccenrermssssmsssmsmmssnssssssssssnsssssnsens 24
Naming Elements it ASPECT cucovevisnrssirisisssssinssssssons 24
Command Words and Parametersesssssesssisssens 25
OPETALOTS.cvvers s essssss st b ss s sisss s sns 26
Predefined Variables..... s, 26
Systetnt Variables v 26
User-defined Varigbles ..., 27
User-defined COnstants......euummm e 27
Global and Local Variables.........evrissensscnsessneseseressnnnns 28
ESCAPE SEGUENCES..omeerrrcreremsersesreseresssrssssssnssnssessmsesassnsans 28
Character CONSEANES......ovvmivciismrnnsnisissesnmsnsiesisssesssbosssens 29
Labels and PrOCEdUTES ... meviereeciscsecesrcnsissssssesssisssssens 29
ASPECT COnVentioNS...sresmissssmssmrssmssssssssssssasssnssnssssssssneas 30
A Note 01 EXAMPIES cucuuerncensrierncesrencsserse e esnarmsarsssins 34
Using Remote ASPECT Commands........ceeeveemessnsensseennne 34
ADD veveererrsrssssasaseeseemssemsesessmeemsssesesssmesmsssstsensssssasesassenessissssasas 35
ALARM .ovivrvsrrssnscsmmcsssemsesessnesesessssssssssasseessessmsessasmssssssenssssensson 36
AND .t s s e e sy 36
ANDNL...cee sttt as s s sssan s e sa s ssn smn e saneane 37
F N] 37
ATGET e erercmmesemcsenmsermesisesssestsassasssasssssssussarsnsssssssiasasnassnn 38
ATOF o1 cenrerrenementsenscssmsessessissssssstossesssssssssssisssarssssssssossssssnssen 39
ATOL e rrcerecsrsesssssass e ssrsssasssasssessarasssatasassesssssassssmnsasnanssas 39
ATOL wiinsnnserssssmesmsmssessesssssssssssesssssssssssssnsssssasssarsssssssssnsssnsnssans 40
ATSAY oot srsssssesmsssssssssssissssssesssesssonsssnsnssons 41
BLANKONcociisnssisssnsssrmsisssinsnsssssssesesesanssensasssssssssrssssssisns 41
BLINKON....oovioiissisnsnssssssssssssmsssssssasssssssasssnsssssssssssasssssssssssassens 41
BOLDON ...iimiiisssissssisssssmsissssssasasssssssssssssisssssssissssssssssasssiss 42
BOX s snnas 42
BREAK e sic s sesn e cnsnnesssssens s em s ssessnnesm e sn e s nsssaseane 43
BYE ..o cciiinismisnisiinssssssonssnsmsnnsssssmssassssssssssssnsessrasssssas 43
CALL.ccoiverererrneeresssssssasssasssmssmmensaessasessssensssasasassasssassmsasssssiasnssns 44

x 17

ASPECT SCRIPT LANGUAGE REFERENCE

18 =

CASE it s s 45
CEIL s msmssnosss s s sssasas 45
CHDIR ..occvnsiirerassssenisssississsassssisssassssesmsassssnsnssssasnsnssssasassessensasses 46
CLEAR 1t rserrersrssssinsssessmisensssssssssssssssnsssssesssssesnssssessssasssansnenss 46
COMGETC caeeereeeerrerersmsrer e ssssessessmesssesesssassssesssesessessesasnass 47
COMGETCD....cecetieersimsesesiesmssssissesssssssssrssmnessssssasssssssasseses 47
COMMENT ...ttt e scsssessasane s e ssr e sns s saea s senssasanans 48
L0 1 1 S 48
COMPUTC ... cmcermticnssinemesiesnsessmsesssssssssssesmmsssssssassesssssassesss 49
CONNECTcoererniesinsincsnseesisensessisssnssssossssesamsssesssamsssssesssseas 49
CURDN .ccivsirisssnsnissresisessssssssssssssssssssssssssssmsssnsnssssorssmesssnssssns 49
CURLF s s sssssssssssssssssssssnssans 50
CUROEFFE ... e ssssssssss s ssssssssassans S50
CURON.....icririersssnsssmssssmssssss s sessssassasassssssssesssansasssssassasessssssaass 50
L 114 50
CURUP ecvtiesserssienivnsssessersnessnsessonsonssnssssesssmsamssmssssssessasessses 51
CWHEN.....ccis s nsisissmenssssssnssssssss s ssassssase 51
DATE....o s s sssansasssssssassassssssssanes 52
DEC e sisincmsssssssesssnsnsss s nssssnassnssssassesesasnsneses 52
L 22 0 I 52
DEFINE s ciitisisesinissssnisinssessisssasssssstssisssossssssessesssssonssnses 53
DELETE ...orcisiirssssesssssmssmsssssnsssssessssasssssessssaranssasassssssssssssssnsns 54
DELCHAR o eeececrtrrmserersismeetessise s sssssenerssosessessessssasases 55
1)) 2 8 1 = 55
L0 7 55
DIMON woccsisssissassosesssssssnsssssssssassssssssassssssssasssssnesssssssscsasssssssssss 56
DIR..osiisrinsssssssisssnssssssssssssssssssssssnssssssssnsssnssssnasssssssssssssssssasassosssns 57
DISKEREEucciciisincimssminssssscssesissassssinssssssssssnssssosssassssssssnsase 57
N 58
DLOAD . et emss s s anasatass s sss s ss s ssansasssassns 58
I N 59
DOSVER ..ciisirnimimimniinisiiissssiisissisisisios i sssessssssassass 60
DSCROLL. s cciisssesnsessemsensisereseesssesmssessssmsesssesenesss ssssssssssmenes 61
EBOL ..iisiisiicsmnissssisiisisissismssssisismsatessssssssensasseseses 61
EBOS....cossiiiiisisissssisessssnisiasasesss s sssens s senes 62
BEOL ..itssesissinessessassissssissssssnsisisssmsmssesesnsasensesssesenes 62
EEOS... i ssssesiesssemsses s assas s ssasesss 62
ELSE orrvrsrresmmmmssssssssinismsssmsmssssisma s s s 63
BELSE wovvnurinimsssssssssssisssmsssssssssssssssssssssssasesmsassensesserssessenssassssssens 63
ELSEIF.cacercnissssssressnsissssnssnsssssmsessasssrmssessassssasssasassassssss 63
BELSETF u.usuvismrssssssssssssesmmsasessssssasensossssassesnssssssssasssssessasenssnsressans 64
EMULATE. ... errencesesss s ssscsscassssserasessensssssssamssnesesssenans 64
ENDICASE .ttt e sssnss s sssssrersrsssnes 65
ENDCOMMENT ...oovcissssessisssssssssssssinnisesssmsssssssssssssesseans 65
ENDEFOR....cociiiisisisissinnmnemseresesrsescssessesasssssesssssssasssasessraserereses 66

ASPECT SCRIPT LANGUAGE REFERENCE

GETETIME .oooooeeeomeeeeeseeseeemmmmmssssesesseesssssmmsmsssseessesssmmmassssesssess 98
GETVATTR e vvesevssmssmsossssssssssssasmsssssssssssssssmssmosssssssssssssssssnsis 08
GETVCHAR et eeeeeeeeeeeesesseesescemmsesssessesmssssesssseemssssesesemmmnes 98
(070 2151 S 99
(€0 1\ T 99
GT e eeeeereeeessesseesessssmsmmsssssssesseseesmmmmsssseessesseessmsmsssssssssssssemmmss e 100
FHANGUP .o eesseeeeeesesesssessssesseesssmssssssssssssesmemssseseeee 101
FHELP oo eeemeeseesseeeeenessemeesssesssssssssesmmsssssssssssssenmmesssessese 101
1101 O 101
151001 SO 102
FIOS T uuvsusunessessssmsssssssnsssssssssssssmsmsnssosssssssssssasmassssssssssssssmsnissss 102
IF oo o socemmsomsmnnssessssssssssasmsnsssssssssssssansssssssssssssssasmmssssssssassssasenssaas 103
GIFDIEF .oovoooeseessssessasmsmssssssssssssmmassnssssssssassasmmmsssssssssssasensssnes 106
TINC oo eeeeeeeeseeeeeeeemmmeseesessseesesesmamasaeeseesseeensesmmsssessessseesemmmsesessss 106
I @1 010)5) ST 106
TINITT ceveveeeeeeeeeeeeeemmmemesseeseeeesesmsmsseeseesseseneemsmsessesesescesmmmseesseee 107
INPORT e ceevemmmeseessseessessmssssessseseessssmmsesesssessresesmmssessessssee 108
INSCHAR .ovoooveomsenenssssssssssmmsmessssssssssssssssesssereresssmmmssssessssses 108
TINSLINE ..o eemseessesssssssseeeesmsmssssssssseresomssmmseesesesessesmmomessoss 108
TNTEGER oo eeeveeeeeessesseeseeesssssesseessesessessssessssessssessseseesssen 109
INTPARM. c.oecvveememeseeseeeeenessmsesssessssessmsessmsmsessseseesssomemsseeseessoee 109
ISETLE. ..vvvumeeeeeeereemmmsessessseseesmmmmmsesessssssssesmmmmasseseseeseesmmmmssesee 110
TTOA cressssessssssssesssssasssssesssssssssssssssssssssssssssssssssssssensnssssssoses 110
KERMSERVE wvvvusmusenserssssssssmsessssssssssssssmsmsossssssssssassomenssssosss 111
KEY2ASCIL....ooovummemmsssssssssensmmmmsssssssssssssessssnssssssssassonmsssssssss 111
KEYGETnennreevvsssesssssssssssssmssssssssssssssssssssassassssssssssmssmsnssssssss 112
KELUSH e ceeveeememeeessseeseeessmsesssssesseesssmesssmesssssssessemmemsssesssseee 112
12400 N5 S 113
LE o oeeomoereeeeeeeesesammmssesssessesesemsmaseseeesesesremmseesssessesesmmmesesesesseee 113
LINEFEED......ccvveovseeessessssesssssessmssssssssssssssssssssssssmssesssssssmss 114
LOCATE oo eeeemmeesseesseseesmsmessssessessssesessaesssssssesssessesssssessone 114
LOG et eeeeeeeeeeeeeemmmsessseesseseemmsmssessessssssesemessesssssssessemmssseeseesees 115
LONG oo eeereeeemessessseesseseesmemsssssssessssseesssesssssssssssssssessssssee 116
101 €) 11 OO 116
LONGPARM.oooomuenmeseesesemsmmmssesessseseesesmmesssssssssssemsmsssssesees 117
LOOPFOR vvsvvessmssnsssssssssssssssnssssssssssssssssasssssssessssessammssessoss 118
10000) 247311 - JS 118
LT oo vevvvessmmaonnessssssssssssssnsessesssemsmmeesssereseesesesmseesssessessrsmemssssessons 118
LTOA vt ssssomsessssessssssssssssssssesssssssesssmssssssssesessessasessessone 119
MATGET oecevveeemeeeeseseeeeeesmmessessssssesssssmsssssssssssesessssmmmsesssssene 119
MDIAL ouacceevmmemmseeseeeeeemesesmmesssessseesemssmsesessssssessssssmnssssssssses 120
MEMEREE ..ccovveeomeereseseevesermessssessesseesesesssessessesesssmmssseseesssoes 121
MEMPEEK ...ovooomemmersseresesmessssessesssessmmmssesssssssssssessssssssssssees 121
MEMPOKE.....ovooemeeeeeeeeeeeveremeesessseseeseesmsmsseseessssessssssssessessssssoes 122
MEMREAD .eooceeveeeeeeeeeeseessesssssssssesssssssssssssssesssssssmmseseessessens 122

20 =

Script Reference

MEMWRITE....eeserreserss s smssrsssssssssssssssssssansssenses 123
MESSAGE... e e ss s es s s e snees 123
METAKEY .ttt snersssinesms e snsstansssssans 124
MGET aocivirerininisiinesmsssessssesssessssssssasssssssssssasressrnssrssssvasressessass 125
MEKDIR. ..ottt issmisssssissesiessssesnssssssressssmssasresssssssasssssses 126
MLOAD ... siisssssssssssssssssssisssassssssens sesssassenssssss 126
MOD s sssesssssessssasssnsssssnrrssesssssns 127
MEPAUSE....ociienesrinsneissiesiesse s sssssasassssssnssssssssnsnes 127
MUL ot ebes s s sn s se s s 128
NEG .o rssressssssesesassssssssesssssas 128
INEQ coisiirismnermcs s resssesss s ssssssssssssssssssssssesssssnssesensessesssnsns 129
INORMON ..ovvvrimrirereermsrrsssmsasssssssssssssssssssssssssassesssenesasnsessesssnsees 129
INOT it ssss s sssessenssssesssasses 129
INULL ot ssmesssssssssssssssassesassensacs 130
OR ittt sse s s sssessassss sesassasssssnsens 130
ORL sttt ibis b e snsss e snseesrs e sassnsanasanses 131
OUTPORT wivciinsimsisniaisisiesisssserenesas s sessnssesssssisssssssseses 131
PARMEREST ..ciisiniisnninsnsinssismssisiosi e smmessesssssssssssasseses 132
PARMSAVE ..o sssmsnsssnssssssssnssssssssssosis 132
PAUSE ... csesssmsseses e ssses s ssassesssssssssssssssssssnsssssens 132
PRINTER .ivvisininsiisnssnississiscsmsensinesmsmsesmssssnesssssssnessessasmsesnss 133
PROC. s snsssssesesessssassssses 134
PUSHBACK ..irrirmnminrinssssssnsssssssssssssssssesisssss 135
PUTENV st e smss s s sasssssssssassessassssnes 135
o I 136
PUTVCHAR.c..tircncmreecrnentsteniaesisenemsesssnesmssssesasesssssssssssssases 136
0 5 O 136
RCA st esssss e sessssasessssssesnses 137
RDWRITE....ovriinmmsisniismsniiisiisssssisossassmessssssesssmssnses 137
REDIAL.....ivivmerisisssssrmrsssssessmsesmsmssssesssssssssssssss sssssemsssssssssssnes 138
RENAME ... sssssssssssssssssssssassns 138
RETURN .ot ssssssssssssssesassssassne 139
REVON ..cticmimicsiismsiiisssiisiisisimesnsesisssasmsesasasssssssssssssneas 139
REWIND...o vttt s s mssssss s essss s sssss sasssssasaone 139
RELUSH ..ottt sensss s sensss s ssss s sse s sss s ssssssssnss 140
RGET wiiissnninmmnsissimisisinisimmisiisisisosomemssssssmssssassres 140
RMDIR c.oiiisermnirssmssssesimissssssssisessimsmsassosssmssessssassasssnsassasssas 141
RETRCMP...uinrcrinerncrsiesnsseessnesssasssssssssssessssssasarsssssssonspacsas 142
RUN st s sstssssssisassssstssesonesnermsasnssesssnsessessanen 142
SCROLL oo creiresres s sesssessesscssssnsssnsssrssssassssssssssasreseresaseses 144
SENDFILE wosisniiisnsnisnsiisisnsisnememssesmmesessnssssssssnsssesssssasses 145
SET .o ititiesinicnmeninsiseniesistsensassssenssssessssassssasensssssassassssssnsses 146
SETFATTR wivesrervsmsnsrnsmrssssssiessermsssmssmssssrssssssmssssssssasssssssssssans 161
SETFDATE ...ooeiticeimcsrcrms s sssssassessssssasessensonssrsssssnssesssases 161
SETEFTIME ...t sncasssssscsasssssssssnssssssnsesses 162

m 21

ASPECT SCRIPT LANGUAGE REFERENCE

SETIMP oveeeecereesssossesseesssssssssssmssessssssssesssesssisssasassss s ssseees 162
SHELL covveveveveressmsresesessssssssssssssssssssssssssmsasssasasssssssnsssssssannsases 163
GHL...veveesresusererossmnsnrssssssssssassssensssasassssssssmnnsssesssasssssasnssssssasassass 164
SHR... e eeeceemseeressassnerssssssessssnseessasssssasasnsesssessssssassnsnnssssssssnssnss 165
SN APSHOT ... eeererassssasssesasencssssiasssasssrsssssssss sescrssstssasanes 165
SOUND e cee et ssrsissasssssasssssesesmssisbtissssssssssssassssasesssmessssstassssess 166
STATIMSG .. errerrorerassnsemsessssssnsenmassmsssssnssssssassmnsasvessssasssnsssssases 166
ST ATREST ...eerrrerissrecsssssss snssensrtsssssssmassassstsssssssmnsrssnssstrnsans 167
STROAT woeeecscsessrmrsarasssssssesasencsrasssbssssanmmsmsssasasssssssssssssisssansnssss 167
STROMP ...orvriresrerssrassrersssesmessissasssmnsssansssssnssssssssnsssansassnsssesess 167
STRCPY uvvvrcererrrersresessssessersssssssnsssensesssssssssmssmssensasssssassasmssdssons 168
CSTREMT .vvvvverversrsssnsmssmssnssssssssmssamsnsssssssssmsnssssansssssassasenssasessiane 169
T RIING ..o eereecsstiiissrsarsassssssssensassstsssssnmnssrasssassnssasssnsassssnsassarers 169
GTRLEN eeeeeeessisnsararsressssssssmmsssesesssssassnssassrssssssassasrsssssnennsasans 170
STRLIWE ovecrrrerensesesrsssssnressstsssssnesssorssssssssasasssnassssiissasassnsssasans 170
STRPARM ...uvvrreeesssmsssmssssssssessmasansassossensssassanssssssisssassnasasassons 171
STRPEEK ...coeviercarerssssssssmessessesssssssssessnssesssssasssssassasssassssnsens 171
STRPOKE .ooeecerreeremreenrisssissssssssesessanssasssssnsssassssssssesasssssssasens 172
STREOET tviceeerarersssereersncersusssassnsmssnmsressassssasssasssssssbssiasassnssnssnsans 172
STRUPDT ..cevssrerensrsraessssssssesmnssssssssssssensessssssssnamnsssassspissssssasass 172
STRUPR ..oeovsrsremeereresessmsssenesssssssssssssassasarssasssamssssassssssasessases 173
GUUB eeeeeereensosssssnssnisrsssssanenesmsssssestiisnssnrsatssssntasssnesnnnssstsnasnaranss 173
GUBSTR.....cormesmrnrnsssssnssresssemsrsisssssssssmmsmrassssssssssassssmasssssssanssssssess 174
SUSPEND UNTIL ..cveeseerserrssssssssmssnssrsssssnassssmssrssssssssssessaseess 175
GINVITCH ..o seirircssnssrasssessesessasmsessssssmssnsrsssnssssassssansnsnsssssstasasns 175
TERMINAL ...cveceerrenrnsesssnsesamssensnsssssssmmmsnrsnsssssssnsssnsasnrssasarasans 178
TERMEKEY ..eoovreeercrerammnnssssssssnssnssrssssnsasarssasssssssusssnnsssassnsenaasas 179
TERMRESET ...ooeeceieeriersessisssasmsssrssnsessssssessnssanssssissassaasasssssase 180
TERMWRT ...vvvrreecererrmesisssssssmsssnssrnssresasmasansssssssssssmssassssnssnssans 180
IV e cesereessnersnsssernsessenssnansessensssssssansnnmasasasesensssssansansstssbssssnnsen 180
TRANSMIT ccceverirsreressrnmesssssssssinssmmmenssssssssasansossssssssssanansaaness 181
TYPE. o vvsreerermeerereseesssesiststssssmsasensasssassr s smsmsansessssssssensssessisssns 182
ULINEON....covererveresrsesseressssissssnssnsssensissserasssssssssssssssasensssssssss 182
TUNDIEF iisvisnemerrassresssencsnersssssssssasssssssnnsssssssasssasansessasssassnssssnss 182
TUSERMSG ..eevveerrarrrssmnemssmrmssssisssmssamssnssssssstassasanssssssssnsassassnss 183
VIDREST . uecererssssssssesssssesssesssassssmnsrasensesssasssssssnsasnspsssssssssnensis 183
VIDSAVE ... iisiesrsmsmrmressssescssssssenssssssssssssimssmssmesss seassssssssssssns 184
WAITFOR......... SO SRR R 185
WAITQUIETcoovvnrmmmsrmersrsssssssssssmsessnsassenssasssasasamsssesmasssasasss 186
TWHEN.....oemenrererearmseresesssassssessesesssenssssnstsnsmssssssssssssasessssessssmenss 187
TWEHILE .ooicververrressnsesssesmesssesnesstsssassanssanssrnssassrsnsssuassssessassasssss 188
TWRITEC u.eeereererssvanssesmesessmnsssssssssssssmsssssrssssasersssssnssnssssssmnssats 189
KOR crireisesissrensssassssasassesasssssssssssssssmsmmssiassssssssssssassssssasssessaess 189
ZERQ usiisirerianssserasssssssseemsessasesmasssssssisssssssssmasasssnssssssbssssasansssans 190
System Variables s 190

2 =

Script Reference

Overview
B e e P T T e e e T ey

This chapter provides alphabetized descriptions of all ASPECT
command words (along with the parameters required by each
word), mathematical operators, expressions and system variables.
We'll cover the basic conventions used throughout this manual, as
well as the rules that govern all ASPECT scripts.

r 23

ASPECT SCRIPT LANGUAGE REFERENCE

The Elements of ASPECT

The basic “building blocks” of ASPECT are commands, parameters
and expressions. Each line in a source program (or .ASP file) begins
with:

o acommand word (usually followed by one or more command
parameters, which control the function of the command in some
manner).

OR

e an expression consisting of one or more operands acted upon by
one or more operators; for example, the expression

NO=N1+N2

contains 3 operands (NO, N1 and N2) and 2 operators (the “="
and “+” signs). Operands usually occur as a numeric constant
or variable, but they can also be the result of a sub-expression

within the expression (like the “=" sign in our example above,
which uses the result of the sub-expression N1+N2).

OR

e acomment, denoted with a semicolon (;) or with the COMMENT
command. Any characters fo the right of a semicolon (orina
COMMENT block) are removed from the compiled script,
allowing you to heavily comment your source programs
without losing speed or efficiency.

OR

o alabel (in the form LABEL:) denoting a target locationina
procedure which you can “jump” to with the GOTO command
word.

Commands, parameters and expressions conform to rules called
“syntax”; like the syntax of written languages, command syntax
ensures that the function of each ASPECT statement is clear and
precise.

Naming Elements in ASPECT

4 m

All of the “named” elements in ASPECT—for example, command
word names, procedure names, labels, variable names and DEFINE
macros—follow the same basic syntax rules. Names have a
maximum length of 80 characters.

Script Reference

Only the first 10 characters are freated as unique (therefore, two
separate variables with names identical for the first 10 characters
would be considered the same, and would generate a compiler
erTor).

Names begin with any alphabetic character (A-Z or a-z) or an
underscore (). Additional characters can be alphabetic, the
underscore character or numeric (0-9). Examples of valid names
are “NUM”, “_FINAL_”, “S0”, “e” and “Term5”.

All pre-existing names (like command words and system variables)
are considered “reserved” within ASPECT, and can’t be used as
unique names; a full listing of these reserved names appears at the
end of this manual in Appendix C.

Command Words and Parameters

¢ [Each command word begins on a separate line, and must be
completed (with all added parameters) on that line—however,
exceptionally long source lines can be “extended” to more than
one line if a backslash (\) appears as the last character. No
comments may follow the backslash. For example, both of
these source lines are valid:

MESSAGE "ENTER YOUR NAME, PLEASE: "

WAITFOR "Enter your long message, please: "\
FOREVER

Note that if a quoted string constant is extended to two lines,
any spaces occurring before the text on the second line will be
included in the constant.

e The maximum length of a command line in a source file is 255
characters, including spaces and line termination characters
(like a carriage return or line feed).

e Command words and parameters cannot be abbreviated—they
must be spelled completely.

e Command words and parameters must be separated from each
other by a space.

¢ Commands and parameters are not case-sensitive (except for
string information between quotes, as in "Hello”, and format
specifiers used in the FATSAY, FSTREMT and STRFMT commands,
as in %d).

= 25

ASPECT SCRIPT LANGUAGE REFERENCE

e Parameters always follow a command word on the same line
(except when the backslash extender is used—see the
paragraph at the beginning of this section).

e You must enter the parameters listed with a command (unless a
parameter is enclosed in brackets or otherwise identified as
optional).

Operators

ASPECT supports numeric expressions composed of operators and
operands. The more commonly-used operators include !, ~, ++, -,
*, I, %, +, -, << and >>. Operands include any numeric variables or
constants.

For complete technical information on all of the supported
operators, please see Appendix D at the back of this manual.

Predefined Variables

For convenience, ASPECT provides both numeric and string
“predefined” variables (which need not be declared at the
beginning of a script). Predefined variables are not reset when
chaining script files, so they can be used to pass values; their values
are initialized to 0 or null when a script is initially executed. Note
that ASPECT also accepts user-defined variables—predefined variable
names are not required.

There are 10 predefined string variables, labelled S0 through 59;
each can contain a maximum of 80 characters.

The predefined numeric integer variables are labeled NO through
N©9; they're typically used for math calculations.

System Variables

26 =

System variables are “read-only” variables to which ASPECT assigns
specific values; they’re available throughout an ASPECT script. For
example, although you cannot change the value of the variable
$ROW (the current row position of the cursor), you can read it
anywhere within a script and use it in any statement where a row
value is accepted.

sy e e

Script Reference

Descriptions of all ASPECT system variables appear at the end of this
chapter.

User-defined Variables

ASPECT uses named elements called variables to store and
manipulate values within a script. Variables are passed as
parameters to commands, and c¢an be used within expressions.
User-defined variable names must adhere to the rules for valid
element names, and it's recommended that you use easily-
recognized names that identify their use within a source program.

There are four types of variables: INTEGER, STRING, FLOAT and
LONG. Complete information on the valid ranges and function of
each variable type is provided in the section titled “ASPECT
Conventions” later in this chapter.

User-defined Constants

User-defined string constants and variables can contain a sequence
of up to 80 characters. Any AsCI character value may occur in a
string variable (some characters are not displayable). To use a
quotation mark within a text string, precede it with the special
escape character * (ASCII 96)—for example, MESSAGE "She said
“"Hello’"". The NULL character (Ascll 0) normally indicates the end
of a text string (and is not considered a part of the 80-character
limit). For security, ASPCOMP encrypts all string constants during
compilation.

User-defined integer and long constants can be specified in decimal
or hexadecimal, while floating point constants must be entered in
decimal format only. No spaces are allowed between the characters
in a numeric constant.

For further information on each type of constant, please refer to
ASPECT Conventions below.

" 27

ASPECT SCRIPT LANGUAGE REFERENCE

Global and Local Variables

Up to 128 global variables of each type can be declared (a maximum
of 512 total). Global variables are declared anywhere within a
source program outside of any procedure (typically, this is at the
top of a source program, before any procedures appear).

A global variable can be referenced within any procedure; if a
procedure changes a global variable, its previous value is not
saved.

Globals cannot be passed to another script by chaining—only the
predefined Nx and Sx variables can pass information to another

script.

Local variables are declared with the same commands as
globals—however, they can only be referenced within the
procedure where they're declared (unlike globals, which are
declared outside of any procedure), and only 128 total local
variables (of any type) can be used in a procedure.

The same local variable name can be used in more than one
procedure, but each occurrence is a completely different case and
has no effect on any other occurences.

Global and local variables must be declared before they are
referenced; several variable definitions may occur on the same line
if each definition is separated with a comma. Variables may also be
injtialized when they're declared, as in:

integer number1, number2=13

Escape Sequences

28 =

ASPECT uses escape sequences in string and character constants to
represent nondisplayable characters and control codes (which have
special meanings to hardware devices). They consist of a
backwards single quote character (ASCII 96, the un-shifted tilde key,
sometimes called the “back tic”) followed by an alphabetic
character or series of digits. The display screen will not be affected
by control codes when using ASPECT commands which write
directly to video memory (such as ATSAY and FATSAY).

Script Reference

The following escape sequences are supported:

Sequence ASCII Description

‘a 7 Bell or alert

‘b 8 Backspace

‘f 12 Form feed

n 10 New line/line feed

‘o 13 Carriage return

t g9 Horizontal tab

v 11 Vertical tab

“ 39 Single quote

” 4 Double quote

“ 96 Backwards single quote

‘ddd ASCII character, octal notation
«ddd ASCII character, hex notation

If a backwards single quote precedes a character not listed above,
the backwards single quote will be ignored.

When a "ddd" sequence is used, it may consist of one to three digits
(ranging from 0 to 255). Values greater than 255 will generate an
error. It's usually best to use all three digits (as in ‘004), since a
letter or digit immediately following an escape sequence may
represent either an octal or hex character (which would then be
interpreted as part of the escape sequence).

Character Constants

A character constant is an integer value representing an AscTt
character within the range 0 through 255. It consists of a single
quote (Ascm 39) followed by an ASCI character and a terminating
single quote. An escape sequence may also be used to represent an
ASCII character within a character constant. For example:.

integer leiter a="a’ (integer constant 97)
integer escape = 033 (integer constant 27)

Labels and Procedures

Labels use a special name format. They must end in a colon and
begin on a separate line—for example:

LABEL1:

® 29

ASPECT SCRIPT LANGUAGE REFERENCE

Labels are used only with the GOTO command word (each GOTO
specifies a label as a destination).

Procedure names are user-defined elements provided as parameters
for the PROC and CALL command words—for example:

proc update

defines the beginning of a procedure block named UPDATE; you
could later branch to that procedure with the statement:

call update

ASPECT Conventions

The following conventions are used to describe ASPECT commands
and their parameters:

Substitute a variable or constant for a

Lowercase 4 1t IC
italic parameter shown in lowercase italic.
[] Any parameter enclosed in square brackets

([D isoptional.

| If multiple parameters are seFarated from
each other by a vertical bar (1), choose only a
single parameter; the vertical bar indicates
"0!’” .

"o Quotation marks should be entered wherever
shown.

You may insert any number of parameters in
the location marked by an ellipsis (...).

Three vertical dots indicate any number of
command statements in a command block.

Examples of commands that use command
blocks are the PROC and WHILE statements.

: An integer value which specifies the
teribut 8 © Wmcn sp
attribute background and foreground colors to be used
with a command. Legal values range from 0
to 255.

To compute the atiribute value, select a
foreground and a background color from the
following list—note that the bright intensity
colors can only be used as foreground (text)
colors:

30 =

T

Script Reference

Regular Bright
Intensity Intensity

0 Black 8 DkGrey

1 Blue 9 LiBlue

2 Green 10 LtGreen
3 Cyan 11 LtCyan

4 Red 12 LtRed

5 Magenta 13 Lt Magenta
6 Brown 14 Yellow

7 LtGrey 15 White

Multiply the background color by 16 and add
the result to the foreground number. The
final result is the attribute value. For
example, the attribute for a blue background
and a high intensity white foreground is 31:
(1*16)+15=31.

An integer representing an ASCI character

character value between 0 and 127 (or 255, if 8-bit
values are included). Control characters
range between 0 and 31, while displayable
characters are usually considered to range
from 32 to 126.

A vertical column on the screen, specified
either as an integer constant or variable. The
maximum value of column is equal to the
number of columns on the display screen
minus 1; column 0 is always the leftmost
column of the screen.

disk An integer specifying a disk drive within the
current command. A value of 0 represents
the current or default drive, 1 represents drive
A, 2 represents drive B and so on.

column

= 31

ASPECT SCRIPT LANGUAGE REFERENCE

float

filespec

floatvar
index

integer

intvar
length

32 .

Any floating point constant or variable. Float
numbers range from approximately +/-
2.225e-308 to 1.797e+308. Float constants
must be in decimal format (zero or more
decimal digits from 0 to 9 followed by a
period and zero or more decimal digits for the
fractional portion, as in “1.32"). At least 1
digit must appear before or after the decimal
point. Any numeric constant containing a
period is assumed to be a floating point
number. Several mathematical commands
and their associated operators are not
compatible with floating constants and
variables—these include the complement,
shift and bitwise commands and operators
COMP, SHL, SHR, AND, OR, XOR, “~", “<<”,
u>>uf u&n’ s I Ly H.I'I.d h‘j\h‘ NO Spaﬁes are
allowed between the characters in a float
constant.

A string specifying the path and/or filename
to be used in a command.

Any floating point variable.

A zero-based integer indicating a single
element (where several are available). For
WHEN, CWHEN, SETJMP, LONGJMP, VIDSAVE
and VIDREST, the index values range from 0 to

2. For file 1/O operations like FOPEN and
FCLOSE, index values range from 0 to 5.

Any integer constant or variable. Integers are
signed, and can range between -32768 and
32767. Integer constants may be specified in
decimal or hexadecimal format. Any constant
appearing in decimal format (within the
range of integer values) is considered an
integer type, as is any number composed of 4
or less hexadecimal digits (if the number is
longer than 4 hex digits, it's assumed to be a
long constant). No spaces are allowed
between the characters in an integer constant.

Any integer variable.

An infeger specifying a string length, numeric
input length or floating point precision;
possible values range from 0 to 80.

long

longvar
name

number

numvar
Nx

offset

port

protocol

row

Script Reference

Any long constant or variable. Long numbers
are signed, with a range of -2,147,483,648
through 2,147,483,647. Long constants may
be specified in decimal or hexadecimal
format. A constant without a period may be
forced as a long constant by appending the
letter “L” to the end (the character can be
upper or lower case). No spaces are allowed
between the characters in a long constant.
Truncation will occur if necessary.

Any long variable.

An unquoted character string containing the
name of a procedure, macro, label or variable.
For more information, see “Naming Elements
in ASPECT” in this chapter.

Any integer, long or floating point constant or
variable. No spaces are allowed between the
characters in a numeric constant.

Any integer, long or floating point variable.

A “predefined” numeric integer variable,
where x ranges from 0 o0 9.

An integer representing a memory address or
offset value within a memory segment. The
value is treated as unsigned within a
command statement, with values ranging
from 0 to 65535. Values greater than 32767
must be entered as hexadecimal.

An integer representing an I/O port address
value—this value should not be confused
with the COM port Dialing Directory field
or the Line Settings window. The value is
treated as unsigned within a command
statement, ranging from 0 fo 65535. Port
values greater than 32767 must be entered as
hexadecimal.

A valid protocol name; used by the SENDFILE
and GETFILE commands.

A horizontal row on the screen, specified as
an integer constant or variable. The
maximum value of row is equal to the
number of rows on the display screen minus
1; row 0 is always the top row of the screen.

= 33

ASPECT SCRIPT LANGUAGE REFERENCE

segment An unsigned integer value corresponding to a
memory segment address. The value is
treated as unsigned within a command
statement, ranging from 0 to 65535. Values
greater than 32767 must be entered as
hexadecimal.

string Any quoted string constant or variable, A
q;l.'t:ted string constant can be up to 80
characters in length, and is surrounded by
quotation marks (for example, “Hello™).

stringvar Any string variable.
strindex A zero-based integer specifying a character
osition in a string; possible values range
om 0 o 79,
Sx A “predefined” string variable, where x
ranges from 0 to 9.
terminal A valid terminal emulation name; used by the
EMULATE and SET EMULATION commands,
A Note on Examples

To add clarity, examples in this manual are presented in lowercase.
You may use either upper- or lowercase (or both) in your scripts to
make your code easier to read; for instance, uppercase can be used
to make command words or procedure names “stand out” in your
script! The only case-sensitive elements within ASPECT are quoted
strings and the format specifiers used in the FATSAY, FSTRFMT and
STRFMT commands.

NESPPPR

Using Remote ASPECT Commands

PROCOMM PLUS also allows a remote user to execute ASPECT script
command statements (enabling you to control your computer from
a distant location). Remote commands are sent from another
computer with the sequence:

command <CR>

where (or AD) = decimal 4 and <CR> = decimal 13. For
example, to force your system to disconnect, a remote computer
might send HANGUP <CR>.

Script Refererice

To send this same command from a Meta key or from a script file,
the AD and carriage return must be translated; therefore, when
executed from a script the command would be TRANSMIT
"ADHANGUPAM".

This remote capability will work with all terminal emulations, but
you must enable remote commands in the Setup facility (see the
discussion of the Setup “General Options” in your USER MANUAL).
Most users can't type fast enough fo enter remote commands
manually (a maximum of two seconds may elapse between
characters); therefore, use Meta keys or script files to send them
whenever possible.

You'll find more information on remote commands and an example
of their use in Chapter 5 of this manual.

ADD

Adds the first two numbers and stores the result in the last numeric
variable.

ADD number number numvar

Example

integer items=5 N2 =ITEMS + 12
add items 12 N2
integer first=4, last=4, tot TOT =8
add first last tot

Comments

Make sure the result of your addition isn’t beyond the range of the
numeric variable’s data type; PROCOMM PLUS does no error
checking on this value.

As with any mathematical expression, the result will be truncated
(if necessary) to fit the range of values for the data type.

The command form “ADD N1N2N3" is equivalent to the operator form
“N3=N1+N2".

See also
MUL and INC.

T 35

ASPECT SCRIPT LANGUAGE REFERENCE

ALARM

Sounds an alarm to alert you to an event.

ALARM [integer]

An integer value that specifies the
amount of time the alarm will sound
(in seconds). The default value is the
Alarm Time specified in the
Display/Sound Options Setup
submenu. This parameter can also be
set with the SET ATIME command.

integer

Example

ALARM 5 Sounds the alarm for 5 seconds. If the
optional integer is omitted, the Setup
default will be used.

Comments

If the SET ALARM command is OFF or if Alarm Sound in the Setup is
set OFF, this command has the same result as a PAUSE command.

See also
SET ATIME, SET ALARM and SQUND.

A T T T o IR

This command performs a bitwise comparison of two numbers and
places the result in the specified numeric variable. For each two
bits compared, the resulting variable is assigned the value 1 or 0 in
the same corresponding bit position. A 1 is assigned if both bits are
1, while a 0 is assigned if either or both of the bits are 0.

AND number number numvar

Comments
AND cannot be used with floating point numbers,

The command form “AND NON1 N2” is equivalent to the operator form
“N2=N0&N1".

See also
OR and XOR.

Script Reference

ANDL

This command performs a logical-AND operation on two numbers
and places the result in the specified integer variable. The result is
1 if both numbers are non-zero. The result is 0 if either or both of
the numbers are zero.

ANDL number number intvar

Comments

The command form “ANDL NON1N2" is equivalent to the operator
form “N2=N0&&N1".

See also

OR and ANDL.

ASSIGN

Assigns a text string or another string variable to a string variable.

ASSIGN strvar string [length]

Examples

string digits Sets the value of variable DIGITS to

stsion didits 12345" 12345; the operator equivalent for this
gn dig statement would be DIGITS=“12345".

string astr, bstr Sets the value of variable ASTR to the
ion estr bst value contained in string variable

assigna ' BSTR. The gperator equivalent for this

statement would be “ASTR=BSTR".
Comments

The optional length value determines the maximum number of
characters to copy from string.

See also

STRCPY, STRCAT, STRUPDT, SUBSTR and STRSET.

5 37

ASPECT SCRIPT LANGUAGE REFERENCE

ATGET
e e ey

Relocates the cursor at a row and column and gets a string or
number (entered at the keyboard) using the specified color
attributes.

ATGET row col attribute length strvar|numvar [DEFAULT]

length An integer value between 1 and 80
that determines the maximum
number of characters that will be
accepted. A beep will sound if the
user attempts o enter more

characters than you specify.

The variable where the string or
stroar| numvar number is stored.
[DEFAULT] An optional parameter indicating that

the present variable contents should
be displayed as a default entry. If the
user presses alone, the default

value will be used.
Example
string response ques the screen.
idsave 0 Displays box.
box 5 15 8 607 Gives prompt.
o x 743 15 "Narae: - On row 7 column 25, using reverse
say e video (112), get a 32-character string
if success
fatsay 24 0 15" Your hame is %s " response
pause 3
endif
vidrest 0
Comments

When responding to an ATGET command, the user must press
to signal that input is complete. The carriage return is not included
in the text string stored in a string variable.

The cursor position will remain at the location where the user
pressed or .

38 &

Script Reference

ATGET can be exited with the key (the IF FAILURE statement
refurns “TRUE”).

See also

GET, KEYGET, MATGET, ATSAY, FATSAY and MGET.

ATOF

Converts the contents of an ASCII string to a floating point value.

ATOF string floatvar
String to convert to a float variable.

£ri

sing Conversion begins at the first floating
point digit.

floatvar Variable where the float value is
stored.

Example

float amount=0

atof "$5.47" amount AMOUNT = 5.47.

Comments

If the string doesn’t contain a float value, ATOF returns a value of 0.

See also
ATOI, ATOL and FTOA.,

ATOI

Converts the contents of an ASCII string to an integer value.
ATOI string intvar

. String to convert to an integer.
strin g ge
g Conversion begins at the first digit.
intoar Variable where the integer is stored.
Examples

string temp="12345"
atoi temp n0 NO = 12345.

s 39

ASPECT SCRIPT LANGUAGE REFERENCE

string test="123the end”
atoi test digits
DIGITS = 123.

Integer answer

assigns3™ 345 7" . =345,
atoi 3 answer

integer inthum

reger nfnu INTNUM = 0.

string title="The end_.."
atol title inthum

Comments

The function stops reading the string at the first non-numeric
character and then processes the numeric characters into the

corresponding integer value, If the string doesn’t contain an

integer value, ATOI returns a value of 0.

Conversion begins at the first digit encountered in the string.

ATOI will not convert hexadecimal numbers,

See also
LTOA, FTOA and ITOA.

ATOL
e e e e e e e e s e S |

Converts the contents of an ASCII string to a long value.

ATOL string longvar
string String to convert to a long value.

longvar Variable where the long is stored.
Example

long speed

atol "38400" speed SPEED = 38400.

Comments

The function starts reading at the first digit encountered and stops
reading the string at the first non-numeric character; ATOL then
processes the numeric characters into the corresponding long
value. If the string doesn’t contain a long value, ATOL returns a
value of 0.

ATOL will not convert hexadecimal numbers.

Script Reference

See also
ATOI, ATOF and LTOA.

ATSAY
M

Displays a constant or variable on the local screen at the specified
position and with the specified attribute colors.

ATSAY row column attribute string|number

Example

atsay 10 0 4 "Hello, Bruce!™ Displays “Iello, Bruce!” in red at row
10, column 0.

See also

MESSAGE, ATGET and FATSAY.

BLANKON
m

Sets the foreground attribute equal to the background attribute,
effectively blanking any subsequently-displayed characters.

BLANKON

See also
BLINKON, BOLDON, DIMON and NORMON.

BLINKON
m

Turns on the blinking attribute for Terminal mode display.
BLINKON

See also
REVON, BOLDON, DIMON and NORMON,

= 41

ASPECT SCRIPT LANGUAGE REFERENCE

BOLDON

Turns on the bold attribute for Terminal mode display.
BOLDON

See also
REVON, ULINEON, DIMON and NORMON.

BOX

Draws a colored box on the screen.

BOX row column row column attribute

row Row number of the upper-left corner

of the box.
Column number of the upper-left

column corner of the box.

row Row number of the lower-right
corner of the box.

column Column number of the lower-right
corner of the box.

Example

box 00231079 Draws a white framed box with red
background from row 0, column 0
(upper-left corner) to row 23, column
10 (lower-right corner).

See also

ATSAY and SCROLL.

Script Reference

BREAK
M

Sends a break to a remote computer system.

BREAK
Examples
seot break 500 ' Sets the break length to 500
milliseconds.

BREAK Sends a break.

Comments

The length of the break can be specified within Setup (or with the

SET BREAK command).

See also

SET BREAK.

BYE
B e I——

Terminates the executing script file and exits PROCOMM PLUS
without disconnecting.

BYE

Example

transmit "Logoff" Sends a message and quits PROCOMM
bye PLUS (the connection is not broken).

Comments

To perform the same function and disconnect the user, use the QUIT
command.

See also
CONNECT, EXIT, QUIT and TERMINAL.

ASPECT SCRIPT LANGUAGE REFERENCE

CALL

Branches to a specified procedure and allows a return.
CALL name [WITH param[param)...[param]]

Example

proc main . _
integer number=1 This structured MAIN procedure
call proc2 with number CALLs two other procedures, passing

call proc3 with &number NUMBER to each. Note that the “&”

endproc symbol is used in the CALL to PROC3.

Il'l":;'c2 The value for NUMBER remains 1 in
Tipamm x the MAIN procedure (it was passed

endproc by value).

proc3 The value for NUMBER now becomes
l“:f,a"" Y 2 in the MAIN procedure (it was

endproc passed by reference).

Comments

An optional parameter list can be included with the CALL
command; up to 10 parameters can be specified, and their order
must be the same as the order in which they are declared in the
CALLed procedure. A parameter can be a constant or a variable.

Variables are normally passed by value, where only the variable’s
value is sent and changes made to it are not returned to the CALLing
procedure (the variable remains unaffected).

The “&” character may precede a variable parameter to indicate
that it's being passed by reference; any changes made to the
corresponding parameter by that procedure will be recorded in the
variable after control returns.

See also
RETURN, PROC, ENDPROC and GOSUB.

Script Reference

CASE
e e e e e P e g oy s U

Provides conditional SWITCH command processing based on a
match between a specified string or integer and the target string or
_integer.

CASE integer|string

Comments

A match (case-insensitive) causes processing to continue with each
command on subsequent lines until the ENDCASE command is
encountered. No match results in the processing of any subsequent
CASE or DEFAULT command.

The SET SWITCHCASE command allows case-sensitive string
maiches.

See the SWITCH command for further information on CASE.

See also
SWITCH, DEFAULT, EXITSWITCH, ENDCASE and SET SWITCHCASE.

CEIL
e T e e o i

Computes the smallest integer value (with no fractional amount)
greater than or equal to a floating point number.

CEIL float numvar

Example

float price=3.2
integer high
ceil price high
HIGH =4.

See also
FLOOR.

ASPECT SCRIPT LANGUAGE REFERENCE

CHDIR

Changes the current directory and/or drive.

CHDIR (filespec

filespec

Examples
chdir "A:\"

chdir "CACOMM"

chdir \COMM\PT2"

See also

MKDIR, RMDIR and GETDIR.

CLEAR

46 =

Identifies the DOS drive (for example,
A?), pathname and directory. The
drive identifier is only required if you
change the current drive.

Changes the current drive to the root
directory of drive A.

Changes the current drive to C: and
the current directory to \COMM.

Changes the current directory to
\COMMN\PT2.

Clears the screen with the specified colors (changing the default
color used for terminal displays).

CLEAR [attribute]

attribute

Examples

clear
clear 31

The optional attribute value allows
you to change the background and
foreground colors and to reset the

current colors. Legal values are 0 -
255.

Clears screen to currently set colors.

Clears the screen to a Blue
background and a high intensity
White foreground and also resets the
current colors.

Script Reference

Comments

For a complete listing of attribute values, see the section titled
“ASPECT Conventions” earlier in this chapter.

See also
SCROLL.

COMGETC
B e e e e e A B e P A et]

Assigns a numeric variable fo the next character value in the
receive data buffer.

COMGETC intvar

Example

integer nxchar Assigns the variable NXCHAR to the
A, value of the next receive buffer

comgetc nxchar character.

Comments
If the receive buffer is empty, COMGETC returns a value of -1.

Any active WHEN statement will be checked against the character
value retrieved by COMGETC.

See also
COMGETCD and SET RXDATA.

COMGETCD

Pauses up to two seconds, then assigns a numeric variable to the
next character value in the receive data buffer.

COMGETCD intvar

Example

integer newchar Assigns the variable NEWCIHAR to
tcd h the value of the next receive buffer

comgetcd newchar character.

g 47

ASPECT 5CRIPT LANGUAGE REFERENCE

Comments

Similar to COMGETC, COMGETCD will wait up to two seconds for a
character to enter the receive buffer; if the buffer remains empty,
COMGETCD returns a value of -1.

Any active WHEN statement will be checked against the character
value retrieved by COMGETCD.

See also
COMGETC and SET RXDATA.

COMMENT

Denotes the start of a comment block. Any commands or remarks
following this command are ignored by the compiler until an
ENDCOMMENT is found. COMMENT blocks cannot be nested.

COMMENT

See also
ENDCOMMENT.

COMP

This command performs a bitwise complement (1's complement) of
a number and places the result in the specified numeric variable.
For each bit in the number, the resulting variable is assigned the
value 1 or 0 in the same corresponding bit position. A 1is assigned
for each 0 bit in the number. A zero is assigned for each 1 bit in the
number.

COMP number numuvar

Comments
COMP cannot be used with floating point numbers.

The command form “COMP NON2” is equivalent to the operafor form
“N2=~N0".

See also

OR and XOR.

Script Reference
COMPUTC

B e e T P e R Vb e e e e e
Sends the specified character value at the communications port.

COMPUTC integer

Example

computc A’ Sends the character A out the active
port.

computc 94 Sends the * character out the active
port.

Comments

Range checking is suppressed for COMPUTC. Use TERMKEY to send
the current emulation’s Keyboard Mapping code for keys like
function and cursor control keys.

See also
COMGETC and TERMKEY,

CONNECT

Exits the script file and returns to Terminal mode.

CONNECT

Comments
EXIT, TERMINAL and CONNECT all perform the same function.

See also
BYE, EXIT, QUIT, and TERMINAL.

CURDN

Moves the cursor down one line.

CURDN

See also

CURLF, CURRT and CURUP.

ASPECT SCRIPT LANGUAGE REFERENCE

CURLF

Moves the cursor one column to the left.

CURLF

See also
RCA, CURRT and CURUP.

CUROFF

Turns cursor off.

CUROFF

See also
CURON, GETCUR, LOCATE and SET BLOCKCUR.

CURON

Turns cursor on.

CURON

See also
CUROFF, GETCUR, LOCATE and SET BLOCKCUR.

CURRT

Moves the cursor one column fo the right.

CURRT

See also
RCA, HOME and CURUP.

50 m

Script Reference

CURUP

Moves the cursor up one line.

CURUP

See also
RCA, HOME and CURDN.

CWHEN

Deactivates an active WHEN command.

CWHEN index | DISCONNECT

Example

Deactivates a previous WHEN

hen 0 "MORE?" \
when command indexed as 0. Note the use

transmit "YAM of the backslash (\) extender
CWHEN 0 character.
-1 ;: Comments

The integer parameter identifies which of the WHEN commands fo
deactivate—up to three WHEN commands can be active, with valid
index values of 0, 1 and 2.

The DISCONNECT option allows the clearing of a previous WHEN
DISCONNECT command.

See also

WHEN.

ASPECT SCRIPT LANGUAGE REFERENCE

DATE

Gets current system date into a string variable.

DATE strvar
The variable where the date is placed,
stroar in the format MM/DD/YY.
See also

TIME and $DATE system variable,

DEC
Decrements a numeric variable by one.
DEC numuvar
Comments
It is possible to decrement a number beyond the range of the
numeric variable’s data type; ASPECT does no error checking on this
value.
The operator equivalent for the statement “DEC N1” is “N1-".
See also
INC and SUB.
DEFAULT

Provides for processing when no match is found among the CASE
statements in a SWITCH command block. See the SWITCH command
for further information.

DEFAULT
Comments
DEFAULT can occur anywhere among the separate CASE statements.

‘See also

SWITCH, CASE and EXITSWITCH.

Script Reference

DEFINE

B e e e o A P i S et L R e R e s s e)

Defines a macro name and the text to substitute for it during
compilation.

DEFINE name ftext

Examples

define red 7 Defines the macro RED as the string
value 7.

define myname "Anne J.” Defines the macro MYNAME as the

transmit myname qucied text string "Anne J." and
transmits it to the remote system.

define wblue 31 Defines the macros WBLUE and

define bgrey 113 BGREY and uses them as attributes

atsay 10 20 wblue "NAME: " for later ATSAY statements.

atget 10 20 bgrey "PASSWORD:"

Comments

Similar to macros in the “C” programming language, DEFINE allows
for textual substitution within a source program.

A macro definition is activated at the point where the DEFINE
occurs, and it remains active until the definition is removed (with
the UNDEF command) or the source program ends.

If an active macro name is encountered. the text DEFINEd for that
macro is substituted for the name, and compilation continues at the
beginning of the substituted text; this can save time and keystrokes
when writing source programs, since often-repeated text can be
inserted with macros. If you must frequently modify a script,
macros can make that task much easier, too (simply change the text
of a macro instead of each occurrence of the macro name).

You can also test for the existence of a DEFINEd macro name (the
text portion of the DEFINE is ignored); use $IFDEF or $ELSEIF to
perform conditional compilation. If the name exists, the commands
which follow (from the $IFDEF or $ELSEIF up to the corresponding
$ELSEIF, $ELSE or $ENDIF) will be included in the compiled
script—otherwise, the commands will be ignored. The $ELSE
command will cause all commands (up to the corresponding
$ENDIF) to be included if the previous $IFDEF or $ELSEIF condition
had failed. $IFDEF commands can be nested.

There is no limit to the number of macros within a source program.
Macro text can consist of zero or more items, each separated by a
space.

ASPECT SCRIPT LANGUAGE REFERENCE

You can also DEFINE a macro at compile time with the ASPcOMP /D
switch. Quotation marks must be used if the macro DEFINEs a
string, and the command line allows a maximum of one token in
the macro text. Your macro will be expanded during compilation
to include the command line data.

To reDEFINE a macro, you must first remove its current definition
with the UNDEF command.

Any occurrence of a macro name prior to its definition (except
within a SIFDEF or $ELSETF command) will generate an error.

For more advanced examples of DEFINE, refer to Chapter 5 of this
manual.

See also
$IFDEF, $ENDIF, $ELSEIF and UNDEF.

DELETE

M

Deletes a specified file.
DELETE (filespec

Example
string file="temp.fil" Deletes the file TEMP.FIL. If the
delete file operation fails, an error message is
if failure displayed.

fatsay "Can’t delete %s" file
endif

Comments

The filespec may include a directory path. Wildcards are not
allowed.

A DELETE operation can be tested with the I¥ SUCCESS and IF
FAILURE statements.

5 w

Script Reference

DELCHAR

.m

Deletes the character at the current cursor position. Any text from
the current cursor position to the end of the line will be shifted one
column to the left.

DELCHAR

See also

DELLINE and INSLINE.

DELLINE

Deletes the entire line at the current cursor position. Lines below
the current cursor position will be scrolled up one line.

DELLINE

See also
DELLINE and INSLINE.

DIAL

Calls an eniry in your Dialing Directory.

DIAL “[ldcodelentrylidcode)...” | stroar(stroar]

entry Indicates the Dialing Directory entry
number you wish to call. Ensure that
this number accurately represents the
entry you wish to use; if you sort
your Dialing Directory, this number
may change and your script will have
to be updated.

An entry can be prefixed and/or
tdcode appended with a dialing code (see

“Adding or Changing a Dialing

Code” in your USER MANUAL).
stroar A variable which you can'set to a

valid Directory entry number and use
in place of a numeric entry.

ASPECT SCRIPT LANGUAGE REFERENCE

stroar A variable in which PROCOMM PLUS
returns the number of the Dialing
Directory entry with which a
connection has been made.
Examples
dial "5" Dials entry 5 in the Dialing Directory.
dial "A5B" Dials code A, Dialing Directory entry
5 and ldcode B.
string numbers Dials entry numbers 1 through 4 until
] mbers ™1 23 4" a connection is made, and stores in S1
:?’}'g" n: : the number of the entry with which
&l umbers s the connection was made.
if not fromddir Calls entry 5, unless the script file is
n;;a;r-?sT I linked to the Dialing Directory.
endif
Comments

Each entry in the dialing string must be separated from the next by
a space or comma; however, no spaces should occur within an
entry (including its ldcodes).

If either the dialing string or string variable contain a list of entry
numbers, they are put into a dialing gueue (for more information
about the dialing queue, see your USER MANUAL).

The IF NOT FROMDDIR statement can be used to check if the script
was executed from a Dialing Directory entry.

See also
DLOAD, MDIAL and REDIAL.

DIMON
e —

5 =

Turns on the dim attribute for Terminal mode display.
DIMON

See also
BLINKON, BOLDON, ULINEON and NORMON.

Script Reference

DIR
Displays a paginated list of files.
DIR ([filespec]
: A valid path/filename or filename
filespec search pattern. Wildcards are
allowed, and this value can be a
variable.
Example
string spec Displays all files with the extension
y " N .ASP in the current directory.
assign spec "*.ASP
dir spec
dir "C-\PCPLUS*.ASX" DiSPlﬂ}’S all files in the directory
C:\PCPLUS with the extension .ASX.
Comments
This is the script equivalent of in Terminal mode. The
default filespec is *.* (or all files).
DISKFREE

Returns the free disk space of the specified drive into a long
variable.

DISKFREE

DISKFREE disk longvar

disk An integer number designating the
drive; 0 indicates the current drive, 1
specifies drive A, 2 indicates drive B

and so on.
Example
long free Places the free space available on the
diskfree 0 free current drive into the long variable
FREE.
See also
GETDIR and MEMFREE.

& 57

ASPECT SCRIPT LANGUAGE REFERENCE

DIV
m

Divides the first number by the second number and stores the
result in the last numeric variable.

DIV number number numuvar

number The dividend.

number The divisor.

HiMOar The I‘ESUlt Of the diViSlOIL
Examples

init hundred=100, ten=10, result RESULT = HUNDRED/TEN =

div hundred ten result 100/10 = 10.

div hundred 33 N9 N9 = HUNDRED/33=100/33=3.
div 369 3 figure FIGURE = 369/3 = 123,
Comments

For integer and long values, any remainder from the division will
be discarded (for example: 3/2=1,2/3=0).

Any division by 0 in your script results in an error message during
execution.

See also

MOD and MUL.

DLOAD
m

Loads a different Dialing Directory.
DLOAD filespec
Comments

The .DIR file extension is optional.

If the directory does not exist (either in the current directory or in
the directory specified with the “SET PCPLUS=" environment
variable), DLOAD will create an empty directory with that name.

58 m

Script Reference

DOS

o o e B o 2 B T T L T B T P s Y S s S i i S S b e et

Executes a DOS command or another program within a PROCOMM
PLUS script file.

DOS string [WAIT INOCLEAR]

Any executable command as it would
appear on the DOS command line
(optionally including a DOS path).

WAIT Suspends processing after _
termination of the DOS function until
the user presses a key.

string

NOCLEAR Prevents PROCOMM PLUS from saving
and clearing the screen before
executing the command (and
restoring the screen upon returning

from the program).

Examples

string ¢1 Prints the file TEMP FIL.

¢1="TYPE temp.fil > PRN"

dos c1

dos "del FILE.EXT" wait De:letes th.e ﬁle FILE.EXT and Waits fOI'
the user to press a key.

dos "sortdisk™ noclear Runs the ngram SORTDISK (Withﬂut
clearing the screen beforehand).

if failure

message "Can't execute command!”
endif
Comments

I the path to the executable command is not specified, the program
or external DOS command (such as FORMAT, which is not internal
like DIR) must be either in the current directory or in the directory
specified in your DOS path. Also, if you're using a hard disk
system, COMMAND.COM must be in the directory from which you
started your computer (typically the root directory of drive C) or in
the location specified by the COMSPEC environment variable. If
you're using a floppy disk system, COMMAND.COM must be on the
disk in drive A (or in the directory found in COMSPEC).

ASPECT SCRIPT LANGUAGE REFERENCE

This command can be tested with the IF SUCCESS statement,
returning a “FALSE” if COMMAND.COM is not found and “TRUE” if
it is found (even if the command to be executed is invalid or fails to
execute). The RUN command provides a similar function and
provides better testing for DOS external commands and other
programs.

Be sure that you have enough memory to execute the specified
command and PROCOMM PLUS at the same time. If you use the DOS
command to execute a program or command that requires user
input, be sure that anyone using the script file is aware of this, since
processing will halt until the required input is provided.

Unlike the RUN command, the DOS command will execute both
standard DOS batch files and infernal DOS commands; RUN only
accepts .COM and .EXE programs.

If NOCLEAR isn’t specified, the screen and cursor position are
saved, the cursor is moved to position 0,0 and the screen is cleared.
After the DOS function has finished, the previous screen and cursor
position are restored.

For more information, see Chapter 4 later in this manual.

See also
RUN, HOOK, METAKEY, MEMFREE and SHELL.

DOSVER
B e o s s P S

Returns the current DOS version into a string variable,

DOSVER strvar

Comments

Both the major and minor version numbers are included.

Example
STRING OS ver Loads the DOS version into the string
STRING Os_rn variable OS_VER, The SUBSTR

- ?l command extracts the major and
STRING OS_min minor version numbers into OS_MA]

DOSVER OS_ver and OS_MIN, respectively.
SUBSTR os_maj 0s_ver0 1 .
SUBSTR os_minos_ver2 2

Script Reference

DSCROLL

W

Scrolls an area of the screen down by the specified number of lines.
This is similar to the BIOS scroll function.

DSCROLL integer row column row column attribute
An integer value ranging between 0

amteger and the number of rows on screen;
this parameter determines the
number of lines to scroll down within
the defined area. If the valueis 0,
then the entire scroll area is blanked.

row column Defines the upper left and lower right

row column corners of the scroll area.

Comments

DSCROLL works identically to the SCROLL command (moving the
screen area down instead of up).

See also
SCROLL.

EBOL

W

Erases text from the current cursor position to the beginning of the
line.

EBOL

See also
EBOS, EEOL and EEOS.

m 61

ASPECT SCRIPT LANGUAGE REFERENCE

EBOS
m

Erases text from the current cursor position to the beginning of the
screen.

EBOS

See also
EBOL, EECL and EEOS.

EEOL
B e e e e S P —

Erases text from the current cursor position to the end of the line.
EEOL

See also

EBOL, EBOS and EEOS.

EEOS
R e e S —

Erases text from the current cursor position to the end of the screen.

EEOS

See also
EBOL, EBOS and EEOL.

62 =m

Script Reference

ELSE

W

Executes an alternate set of commands when the conditions
specified in the associated IF or ELSEIF commands evaluate as
“EALSE”. See the IF command for further information.

ELSE
Example
integer normcolor Sets the’ integer Val‘ii?!ble .
i mono NORMCOLOR fto 7 if the computer is
using a monochrome adaptor; if the
normcolor=7 adaptor is anything else,
else NORMCOLOR becomes 31.
normcolor=31
endif

$ELSE

M

Allows conditional compilation by testing for the existence of a
DEFINEd macro name. For more information, see the DEFINE
command.

$ELSE

ELSEIF

M

Performs multiple tests of conditional expressions. ELSEIF can be
used instead of nested IF .. ENDIF command blocks.

Conditions can include any numeric expression involving logical or
numeric operators and operands. If the expression evaluates to a
non-zero value, the the condition was satisfied (and is considered
“TRUE"), while a value of 0 indicates that the test was “FALSE".

& 63

ASPECT SCRIPT LANGUAGE REFERENCE

See the IF command for further information.

ELSEIF condition

Example
The integer variable CHOICE
atget 5 5 31 1 choice 424
if gh N © determines whether to CALL either
choice ==1 MENUITEM1 or MENUTTEM?. If
call menuitem1 CHOICE is not equal to 1 or 2, the
elseif choice == procedure SELECTERR is CALLed
call menuitem2 instead.

else
call selecterr
endif

$ELSEIF
m

Allows conditional compilation by testing for the existence of a
DEFINEd macro name. For more information, see the DEFINE
command.

$SELSEIF

EMULATE
M

Changes the active emulation to the terminal type specified.

EMULATE terminal

terminal Valid terminal types are: TTY, VT52,
VT100, VT102, VT220, VT320,
ANGSI, IBMPC, WYSE75, ATT605,
ATT4410, TV922, H19, IBM3101,
IBM3161, DGD100, DGD200,
DGD210, ADDS60, ADDS90,
ADM3, ADM5, ADM31, ESPRITS,
IBM3270, TV910, TV912, TV92,
TV925, TV950, TV955, WYSE50 and

WYSE100.

Example

emulate VT102 Changes emulation to the VT102
terminal type.

Script Reference

Comments

The EMULATE command will clear the screen—if this isn't desirable,
use the VIDSAVE and VIDREST commands to save the old screen and
restore it after you've switched emulations.

See also
VIDSAVE, VIDREST and SET EMULATION.

ENDCASE

Concludes the CASE command within the SWITCH command
phrase. See the SWITCH command for further information.

ENDCASE

Example

The integer variable RESP determines
whether to CALL either MENUT or
MENUZ2. If RESP is not equal to 1 or
2, the procedure SELECTERR is
CALLed instead.

integer resp
atget 5531 1resp
switch resp
case 1
call menui
endcase
case 2
call mehu2
endcase
default
call selecterr
endcase
endswitch

ENDCOMMENT

Marks the end of a comment block; commands which follow are no
longer ignored.

ENDCOMMENT

See also

COMMENT.

x 65

ASPECT SCRIPT LANGUAGE REFERENCE

ENDFOR
L e T e e e P ey

Concludes the FOR command block. See the FOR command for
further information.

ENDFOR

ENDIF
L o T ey

Concludes the IF command block. See the If command for further
information.

ENDIF

$ENDIF

B e e o e i i o e L i e

Concludes the IF command block, allowing conditional compilation
by testing for the existence of a DEFINEd macro name. For more
information, see the DEFINE command.

$ENDIF

ENDPROC

Terminates a procedure block. See the PROC command for further
information.

ENDPROC

Comments

ENDPROC always includes a RETURN fo the CALLing procedure; the
RETURN statement isn’t needed.

66 m

Script Reference

ENDSWITCH

T T e e e e T e B T o 1 R O e B e e S O S S

Terminates the SWITCH command block. See the SWITCH command
for further information.

ENDSWITCH

ENDWHILE

o e e e e e s

Terminates the WHILE command block. See the WHILE command for
further information.

ENDWHILE

EOF

#

Tests whether or not the end of a file opened with the FOPEN
command has been reached.

EOQOF index intvar

Example

Tests the file corresponding to index
defi 1
efinetrue number 1 for end-of-file and places

integer testeof=0 the result in the integer variable
fopen 0 "test.fil" TEST.

fgets 0 s1
eof 0 testeof
if testeof
message "EOF reached!”
endif

Comments

The EOF condition becomes TRUE after the first operation that
attempts to read past the end of a file. It will remain TRUE until an
FSEEK, FCLEAR or REWIND is performed.

The integer variable will be initialized to 0 for “FALSE” and 1 for
.H'I‘RUEH.

ASPECT SCRIPT LANGUAGE REFERENCE

The conditional form of this command is “IF/F1LSEIF/WHILE EOF
INDEX".

See also

FSEEK, REWIND, IF EQF and FCLEAR.

EQ

m

Tests two numeric values for equality.

EQ number number intvar

Example

integer price,total Tests the the values PRICE and
TOTAL, placing the result in the

eq price total n1 -predefined numeric variable N1.

Comments

The integer variable will be initialized to 0 for “FALSE” and any
non-zero value for “TRUE”.

The conditional form of this command is “IF/ELSEIF/WHILE EQ
NUMBER NUMBER”, while the operator form is “NUMBER==NUMBER".

See also
NEQ.

ERRORMSG

Displays an error message centered in a box on the local screen.
ERRORMSG string

string A string of up to 80 characters.

Comments

An error sound accompanies the message. The message can be
erased by pressing a key (or waiting two seconds for the message to
erase automatically).

See also
USERMSG and STATMSG.

68 =

Script Reference

EXECUTE

Executes another script (either a source program or a compiled
script); this process is called “chaining”. The currently executing
script terminates without return.

EXECUTE filespec

filespec Any valid script filename. The file
extensions .ASX and .ASP are not
required.
Examples
execute "CALL tom" Executes the smpt file CALL_TOM.ASX.
string next_file Assigns a filename to NEXT_FILE
get S0 based on the value of S0 and executes
switch S0 that file.
case "A"
assign next_file "CHOICEA.ASX"
endcase
case "B"
assign next_file "CHOICEB.ASX"
endcase
default
assign nexi_file "DEFAULT.ASX"
endcase
endswitch

axecute next_file

Comments

If the extension is ommitted, EXECUTE will first search for a
compiled script (with the .ASX extension). If a compiled script that
matches the filespec can’t be found, EXECUTE will attempt to
compile a matching source file (with the .ASP extension). If an .ASP
file is specified, ASPECT always attempts compilation.

ASPECT SCRIPT LANGUAGE REFERENCE

Only predefined variables (50-59, NO-N9) can be used to pass
values to an EXECUTEd script; user-defined variables will not retain

their values.
; The script will terminate if the specified filespec doesn't exist or
? can’t be compiled.
EXIT
' Terminates the executing script file and returns the user to
: Terminal Mode.
EXIT
Examples
o " Transmits closing message
transmit "Goodbye 5 8
hangup d “Goodbye” and disconnects. The user
exit is then returned to Terminal mode.
Comments

CONNECT, TERMINAL and EXIT are all synonyms; all three
commands perform the same function.

See also

BYE, CONNECT, QUIT and TERMINAL.

Script Reference

EXITFOR

Continues execution with the command after an ENDFOR command.
For further information, see the FOR command.

EXITFOR

EXITSWITCH

Transfers control from within a CASE or DEFAULT command block
to the line following the ENDSWITCH command. EXITSWITCH is
similar to the “C” language BREAK command. For more
information, see the SWITCH command.

EXITSWITCH

EXITWHILE

Continues execution with the command after an ENDWHILE
command. For further information, see the WHILE command.

EXITWHILE

FATSAY

Displays formatted text on the local screen at the specified location
and with the specified color attributes. FATSAY is similar to “printf”
in the “C" programming language.

FATSAY row column attribute formatstr [param]...[param]

row - the row at which the text will be displayed. This value is
zero-based (0 is the top row of your display, 23 means the 24th
Tow),

column - the column at which the first character of the specified text
will be displayed. This value is also zero-based.

attribute - the video attribute of the displayed text. For a full listing
of the available attributes, please refer to the “ASPECT Conventions”
section at the beginning of this chapter.

ASPECT SCRIPT LANGUAGE REFERENCE

formatstr - the format string, which is either a quoted string or a
string variable. It may contain not only text but special reserved
characters (called “format specifiers”) that indicate how to display
optional parameters as part of the text. Each format specifier
corresponds to a variable or constant (param) that appears at the
end of the command. For details on the formatstr see below.

param - an optional variable or constant whose value may be
converted to a specified format and displayed as part of the text.
This variable or constant may be any valid type; the method by
which it's displayed is determined by its corresponding format
specifier in the format string. If there are multiple parameters, the
first param corresponds with the first format specifier in the format
string, the second variable with the second format specifier and so
on. Only those params with corresponding format specifiers will be
displayed; for example, if there are three params and only two
format specifiers, the values of only the first two params will be
displayed.

Structure of the Format String

The format string consists of zero or more format specifiers
interspersed with text. At its simplest, FATSAY could be used to
simply display a string (like the ATSAY command). For example,
the statement:

fatsay 0 0 31 "This Is literal text.”

displays “This is literal text.” (without the quotation marks) in
high-intensity white on a blue background. The display begins at
the first row and first column.

However, the format string may also contain an assortment of
format specifiers that correspond with optional variables or
constants (params) following the format string. Format specifiers
and their corresponding params are processed from left to right. A
format specifier is constructed as follows:

%[flagllwidthll.precisionltype
where:

% - indicates that this is the beginning of the format specifier
(rather than normal text). Characters following this special marker
describe the format for displaying the corresponding param. If the
% sign is followed by a character that has no special meaning as a
format specifier (if it is not followed by a valid type), then that
character and any subsequent characters until the next % are
simply displayed as normal text. To display a percent sign, use
“ToTe"” .

Script Reference

"-“! II+II "o

flag - valid flags are ," " (a space), and "#". These flags are

optional.

"-" left justifies the converted param within the number of places
indicated in the width field. Without this optional flag, the
displayed text is right justified.

"+" prefixes the converted param with a plus or minus sign (if it
represents a signed type). Without this flag, the text will be
displayed with a sign only if it represents a negative number.

(L]

- a space immediately after the % marker prefixes the converted
param with a space if it represents a signed positive value (the space
is ignored if both the blank and "+" flags appear.)

"#" - prefixes the converted param with the characters "0x" (if it
represents a hexadecimal value) or with "0" (if it represents an octal
value). In addition the # flag can be used to force a decimal point
for all float conversions (even if there is no fractional portion). This
flag is ignored if used with any format types other than x, X, o,f ¢,
E, g or G. For example:

integer numi =16

float num2 = 16

fatsay 0 0 31 "%+d" num1 ; outputs "+16"
fatsay 1 0 31 "% d" num1 ; outputs " 16"
fatsay 2 0 31 "%#x" num1 ; outputs "0x10™
fatsay 3 0 31 "%#" num1i ; outputs "16."

width - this optional value specifies the minimum number of
characters that will be generated for the conversion from the
corresponding param. If the width value is greater than the number
of characters in the converted text, it will be padded on the left with
spaces (unless this has been altered by one of the flags). A0
immediately preceding the width field pads the converted text with
leading zeros after any sign or prefix (as long as no other padding
has been specified). Note that since the width field specifies the
minimum number of generated characters, it will never cause a
value to be truncated.

integer numi = 16

fatsay 0 0 31 "%d" num1 ; outputs "16"
fatsay 1 0 31 "%05d" num1 ; outputs "00016™
fatsay 2 0 31 "%-5d" num1 ; outputs ™16 ™

" 73

ASPECT SCRIPT LANGUAGE REFERENCE

74 =

precision - this optional value must always be preceded by a period
(.); it specifies the minimum number of digits to display when
converting an integer param to displayed text, the number of
decimal places to display on a float conversion (using thee, E , or f
types), the maximum number of siginificant digits to displayona g
or G conversion or the maximum number of characters to display
on a string conversion (using the s type). The default precision for
floating point values may be specified using the SET DECIMAL
statement. The width and/or precision fields may be an asterisk (¥),
which means that the value is supplied from the param list
following the format string. In this case, the extra param would be
an integer type preceding the param to be converted. Since precision
specifies the maximum number of digits, it may cause truncation of
strings or rounding of floats. For example:

string string1 = "This is a string”

float num1 = 1234.567

fatsay 0 0 31 "%7.4s" string1 joutputs ™ This"
fatsay 2 0 31 "%-"."" 8 1 num1 ; outputs "1234.5 "

type - this specifier determines the data type required of the
corresponding param (if any) and how the FATSAY command will
alter the param’s value before converting it to displayed text.
Please note that the following fype specifiers are case sensitive;
lower case types must be entered in lower case and upper case
specifiers must be entered in upper case!

d or i- param is converted to signed decimal notation. Thed ori
may be preceded by an / (lower case) to specify a long integer type.

u - param is output as an unsigned decimal number. The u may be
preceded by an [to specify a long unsigned integer type.

0 - param is output in octal notation. The 0 may be preceded by an!
to specify a long octal type.

x - param is output in hexadecimal notation using the characters 0-9
and a-f.

X - param is output in hexadecimal notation using the characters 0-9
and A-F.

f - param is output in the form [-]dddd.dddd, where dddd is one or
more decimal digits. The number of digits displayed after the
decimal point.is determined by the precision specification (see
above); the default precision is 2. A minus sign is displayed if the
value is less than zero, but a plus sign is displayed only if called for
with the "+" flag.

Script Reference

e - param is output in the form [-]d.dddd e sign ddd, where d is a
decimal digit, dddd is one or more decimal digits, ddd is three
decimal digits, and the sign is "+" or "-" (scientific notation).

E - same as ¢ above, except that this type uses a capital E instead of
lower case e to prefix the exponent.

g - param is output in f or e format, as appropriate. Ifthee
conversion would yield an exponent greater than -4 or less than the
specified precision, the param value is output in f format instead.
The generated text has no trailing zeros in any fraction and
includes a decimal point only if there are fractional digits or if you

specify the "#" flag.

G - same as g above, except the E output format is used instead of
the e format.

¢ - integer param is output as a single ASCT character.

s - string param is displayed up to the first null character or until the
precision value is reached.

integer num1 = 20, num2 = 30

string stringi1 = "This is a string”

float float1 = 1234.567

fatsay 0 0 31 "Print %d and %d"” num1 num2 ; outputs “Print 20 and 30"
fatsay 0 0 31 "To %d and %#X" num1 num?2 ; outputs "To 20 and 0X1E"

fatsay 0 0 31 "%7.4s" string1 soutputs ™ This"
fatsay 2 0 31 "%-8.11" numi ; outputs "12345 "
See also
STREMT and FSTREMT.

FCLEAR

Clears all end-of-file and error flags associated with the indicated
file index number.

FCLEAR index

Examples :

felear 0 Clears EOF and error flags for the file
corresponding to index 0.

See also

FOPEN and EOF.

ASPECT SCRIPT LANGUAGE REFERENCE

FCLOSE

Closes the file corresponding fo the provided index.

FCLOSE index
Example
fclose 0 gloses the file corresponding to index
Comments

The I/O buffer contents for a file will automatically be written
before it’s closed (if it was opened in WRITE or APPEND mode).

This command can be tested with the IF SUCCESS statement,
returning “FALSE” if an error occurred while closing the file.

See also
FOPEN and FFLUSH.

FETCH

Returns the current value(s) of any SET command parameter.

FETCH param value

param The desired SET command parameter.

value The current value of the specified SET
command parameter(s). Note that
this value must be returned to the
proper data type; the variable may be
in intvar, strvar or longvar format. The
definition for SET includes all possible
values for each command parameter.

Example
long speed }’lacei ﬂ}e current gﬁsssi?%g;ud rate
fetch baudrate speed into the long variable .

76 =

Script Reference

Comments

The following terminal emulation types are refurned by the FETCH
EMULATION statement:

TTY 0 DGD210 17
VI52 1 ADDS60 18
VT100 2 ADDS30 19
VT102 3 ADM3 20
VT220 4 ADMS 21
V1320 5 ADM?31 22
ANSI 6 ESPRIT3 23
IBMPC 7 IBM3270 24
WYSE?75 3 TV910 25
ATT605 9 TV912 26
ATT4410 10 V920 27
V922 11 TV325 28
HIg 12 TV350 29
1BM3101 13 TV955 30
IBM3161 14 WYSES0 31
DGDI100 15 WYSE100 32
DGD200 16

The following file transfer protocol types are returned by the FETCH
DLXPROTOX/PROTOCOL/ULXPROTOX statements:

EXTPROTO1 0 YMODEMG 9

EXTPROTO2 1 ZMODEM 10
EXTPROTO3 2 TIKXMODEM 1
CISB 3 TKXMODEMG 12
KERMIT 4 ASCII 13
MODEM7 5 IMODEM 14
SEALINK 6 RASCIL 15
TELINK 7 WXMODEM 16
YMODEM 8 XMODEM 17

In general, the FETCHed value for parameters with OFF | ON syntax
is “0” for OFF, “1” for ON; for parameters with NO | YES syntax,
FETCHed values are typically “0” for NO, “1” for YES.

See also

SET.

ASPECT SCRIPT LANGUAGE REFERENCE

FFLUSH

Writes the current I/O buffer contents to the file with the specified
index.

FFLUSH index

Example

fflush 0 Writes the I/ buffer contents to the
file corresponding to index 0.

Comments

If the file was opened in READ mode, the buffer contents are
cleared.

In WRITE or APPEND mode, buffers are automatically flushed
when they’re full or when the file is closed.

This command can be tested with the IF SUCCESS statement,
returning “FALSE” if an error occurred while writing the buffer
contents to the file.

See also
FOPEN, FCLEAR and FCLOSE.

FGETC

78 =

Reads a character from the file with the specified index into a
variable.

FGETC index intvar

Example

integer num Reads a character from the file '
fopen 0 “test.fil" corresponding to index 0 and places it
open ' in the integer variable NUM.

fgetc 0 Num

Comments

To make sure a character is available, first check the file status
using the IF EOF statement or the EOF command.

Script Reference

This command can be tested with the IF SUCCESS statement,
returning “FALSE" if an error occurred while reading the file.

See also
FSEEK, FTELL, FGETS, FCLOSE, FPUTC, EOF, FOPEN and FREAD.

FGETS

Reads a string from the file corresponding to a given index into a
variable.

FGETS index strvar

Example

string info Reads a string from the file _
openoesar e Somesponing o nde 0 and places i
fgets 0 info

Comments

The reading will terminate when FGETS encounters the end-of-file, a
line feed character or when 80 characters have been read.

The string will include the ending line feed (unless you SET
FGETS_CRLF OFF). The IF EOF statement or EOF command can test
the file before reading it, and the IF SUCCESS statement will return
“FALSE” if an error occurred while reading the file,

See also

FSEEK, FTELL, FGETC, FCLOSE, FPUTS, EOF, FREAD, FOPEN and SET
FGETS_CRLF.

FIND

Tests for an occurrence of the specified text within a variable.

FIND string string [intvar]

The second string contains the
characters being searched.

string

w79

ASPECT SCRIPT LANGUAGE REFERENCE

80 =

lintoar]

Examples

string resp1

message "Enter the password:"
mget resp1

find resp1 "password”

if not found
message "Invalid password"
goto secure_breach
else
call welcome
endif

Comments

An optional integer variable that's
assigned the string index where the
desired text was found. The index is
zero-based (the first character begins
at position 0).

Receives information and masks its
appearance with asterisks (¥).

Tests for the string “PASSWORD” in
variable RESP1.

Case-sensitivity can be controlled with the SET FINDCASE command.

This command can be tested with the Ir FOUND statement; FOUND is
set to 1 if the text occurs and 0 if it does not occur.

See also
SET FINDCASE.

FINDFIRST

Script Reference

Locates a disk file using a specification you provide.

FINDFIRST filespec [string]

string

Example
FINDFIRST " TXT"

string file1="ABC.*"

findfirst file1

if found

fatsay 1 1 7 "Got %s" $fname
endif

Comments

An optional string specifying the
attributes to be used for the search. If
this string is omitted, only “normal”
files with no attributes (or just a read-
only and/or archive attribute set) will
be included. Specifying Hidden
(“H”), System (“S”) or Directory
(“D") will search those files as well as
the normal files. If only a Volume
label attribute (“V”) is used, the
volume label is the only item
searched; the Volume attribute is
ignored when searching with any
other attribute (except when
searching the root directory of a
drive). If a volume label is found, the
system variables $FILENAME and
$FNAME will both contain up to 11
characters of the volume name, and
$FEXT will be set to null.

Finds the first file in the current
directory with an extension of .TXT.

Finds the first file in the current
directory matching the wildcard
specification ABC*, A message is
displayed if the file is found; note that
the system variable $FNAME is used in
the FATSAY statement to display the
filename without its extension.

Both wildcards and a full DOS path are accepted as part of filespec;
FINDFIRST defaults to the current directory if a path isn't provided.

The success of the operation can be tested with the IF FOUND
statement.

ASPECT SCRIPT LANGUAGE REFERENCE

The file’s name, extension, name and extension, size, date stamp,
time stamp and attributes are stored in the system variables
$FNAME, $FEXT, $FILENAME, $FSIZE, $FDATE, $FTIME and $FATTR

respectively.
See also

FINDNEXT.

FINDNEXT

8 =

Locates additional disk files with the specification provided in a
previous FINDFIRST command.

FINDNEXT

Example

string spec="*txt" Finds all files in the current directory
integer another=0 with the extension *TXT, displaying
integer arow=1 each one without their extension. The
findfirst spec FINDNEXT command searches the

if found current directory for another filename

another=1 : other
fatsay 117 "%s" $fname matching the same specification.

endif
while another
++aArow
findnext
if found
fatgay arow 1 7 "%s" $fname
else
exitwhile
endif
endwhile

Comments

The file specification for this command is taken from the previous
FINDFIRST command. The success of the opération can be tested
with the IF FOUND statement.

As with FINDFIRST, the name, extension, name and extension, size,
date stamp, time stamp and attributes are stored in the system
variables $FNAME, $FEXT, $FILENAME, $FSIZE, $FDATE, $FTIME and
$FATTR respectively.

See also

FINDFIRST.

Script Reference

FLOAT

Defines a global or local float variable.

FLOAT namel=expression][,name[=expression]]...

An initializer expression. If can
contain operators, constants or
previously-defined variables.

[=expression]

Examples
float item Deﬁnes the ﬂoat Variable I'TEIVI.
Defines the float variables ITEM and
float item,cost = 2.32
o TEmE? COST. COST is initialized to “2.32".
Comments

Up to 128 global variables of each type can be defined (a maximum
of 512 total). Global variables are defined anywhere within a
source program outside of any procedure (fypically, this is at the
top of a source program, before any procedures appeat).

A global variable can be referenced within any procedure; if
procedure changes a global variable, its previous value is not
saved. _

Globals cannot be passed to another script by chaining—only the
predefined Nx and Sx variables can pass information to another
script.

Local variables are defined with the same commands as globals;
however, they can only be referenced within the procedure where
they're defined (unlike globals, which are defined outside of any
procedure), and only 128 total local variables (of any type) can be
used in a source program.

The same local variable name can be used in more than one
procedure, but each occurrence is a completely different case and
has no effect on any other occurences. Local variables will accept
initializer expressions (just like global variables).

Global and local variables must be defined before they are
referenced; several variable definitions may occur on the same line
if each definition is separated with a comma.

See also

FLOATPARM, LONG, STRING and INTEGER.

= 83

ASPECT SCRIPT LANGUAGE REFERENCE

FLOATPARM

84 =

Defines a float parameter variable.

FLOATPARM namel, namel...
Examples

ﬁ:.f :l::?l ya22.2233 Defines three float values and passes

them to a second procedure. Within
Il ith
naproe PROC2, A=1.1, B=2.2 and C=3.3.

proc2
floatparma, b, ¢
endproc

Comments

Any procedure—except MAIN—can be defined with up to 10
parameter varigbles. Parameter variables are similar to local
variables in that they may only be referenced within the procedure
in which they’re defined; unlike local variables, though, parameter
values are automatically initialized when the procedure is called.

The CALL command allows values to be passed to the procedure
being called; these values are used to initialize the parameters upon
entering the procedure, Parameter variables must be defined at the
top of a procedure (before any commands or local variables are
processed), and the order in which they're defined determines the
order in which they’re read by the CALLed procedure. Additional
checking on passed parameters is performed by ASPCOMP during
compilation—any inconsistencies will result in error messages.

Several parameters of the same type may be defined on the same
source line (if each definition is separated from the next by a
comma).

See also
LONGPARM, INTPARM and STRPARM.

Script Reference

FLOOR

W

Computes the largest integer value (with no fractional amount) less
than or equal to a floating point number.

FLOOR float numuvar

See also
CEIL.

FOPEN

S e T P T P B T i o L i T
Opens a file in the indicated mode(s) and assigns it to a file index.

FOPEN index filespec modes

filespec A valid filename.

modes A string containing the desired access
modes. Valid modes are READ (“r”),
WRITE (“w”) and APPEND (“a”).
Valid attributes are TEXT (“t”),
BINARY (“b”) and READ/WRITE
(.I'n‘+.ﬂ')l

Examples

fopen 0 "test.txt" "wb" Opens the fﬂe TEST.TXT in BINARY
WRITE mode and assigns it an index
number of 0.

fopen 1 "datafil" "Hs" Opens the file DATA.FIL in TEXT
READ/WRITE mode and assigns it
an index number of 1.

Comments

WRITE mode always overwrites (or erases) the contents of an
existing file, while APPEND will only allow write operations at the
end of an existing file.

TEXT and BINARY determine the translation mode for new lines,
In TEXT mode (the default), the carriage return/line feed
combination is translated to a single line feed during the read (and
the reverse when writing—a line feed is written as a carriage
return/line feed pair). In BINARY mode, no translation is
performed.

ASPECT SCRIPT LANGUAGE REFERENCE

The “+” character can be appended to any mode to allow both
READ and WRITE operations on the same file; before switching
between READ and WRITE, however, ASPECT requires an FSEEK or
REWIND command.

This command can be tested with the IF SUCCESS statement,
returning “FALSE" if the file cannot be opened.

The file pointer position is always initially set at the start of the file
(no matter what mode or modes you select).

A maximum of 6 files may be opened at once, with index numbers
0 through 5.

See also

FCLOSE, FTELL, FPUTC, FPUTS, FSEEK, REWIND and FWRITE.

FOR
M

Repeats a command or series of commands a specific number of
times.

FOR numvar[=expression] UPTO|DOWNTO number

ENDFOR
a ; Optional initialization expression for
[=expression] the loop variable.
WNT Indicates whether the variable is to be
UPTOIDO o incremented (by UPTO) or
decremented (by DOWNTO) after
each iteration. The value is inclusive;
if UPTO is set to 25 and the variable is
initialized to 1, the loop will be
performed 25 times.
ENDFOR Required terminator for the FOR
command block.
Example
for row=1 upto 25 Performs the BAT procedure and
call bat increments the value of ROW by 1
endfor until ROW=25. SiIICE ROW is
initialized to 1, the loop will be
performed 25 times.

86 w

Script Reference

Comments

The LOOPFOR and EXITFOR commands allow branching to the next
iteration test or command following the ENDFOR.

See also

WHILE, LOOPFOR and EXITFOR.

FPUTC

Writes an ASCII character value to the indicated file.

FPUTC index character

character The character can be any ASCH value.

Comments

This command allows the addition of a carriage return/line feed
pair to the end of any string. For example, if a file was opened with
the command FOPEN 0 "filename" "wt", a string written with FPUTS
could be terminated with a line feed with the statement FPUTC 0 10.

This command can be tested with the IF SUCCESS statement,
returning “FALSE” if the data cannot be written to the file.

See also
FOPEN, FPUTS and FWRITE.

FPUTS

)
Writes a string to the file corresponding to the specified index.
FPUTS index string

Comments

FPUTS should only be used on strings terminating in one or more
nulls; otherwise, use the FWRITE command.

This command can be tested with the IF SUCCESS statement,
returning “FALSE” if the data cannot be written to the file.

See also

FOPEN, FPUTC and FWRITE.

ASPECT SCRIPT LANGUAGE REFERENCE

FREAD

Reads a block of data from a file into a string variable and returns
the actual number of bytes read in a third integer variable.

FREAD index strvar length intvar

String variable that will hold the

stroar results of the read.

length The size in bytes of the block to be
read (an integer value between 1 and
80).

intoar Return value is the actual number of
bytes read, which may be less than
requested if an error occurs or end-of-
file is reached.

Example

fread 0 S1 40 N3 Reads 40 bytes from the file indexed
as (into 51 and puts the “return
value” into N3. '

Comments

The status of this command can be checked by comparing the

number of bytes read with the number requested; alternately, you

can test for the end-of-file condition.

To test for errors while reading a file, use the IF SUCCESS and IF

FAILURE statements.

See also

FGETC, FGETS and FOPEN.

FSEEK

B e e o P e e e e i
Repositions the file pointer for the file corresponding to the
specified index.

FSEEK index long integer

Offset of the new position relative to
the origin of the seek; the value can be
positive or negative.

long

88 »

Script Reference

integer The origin of the seek operation.
Possible values are 0 (beginning of
the file), 1 (current pointer position)

or 2 (end-of-file).

Example

fseek 31001 POSiﬁOI‘I.S thf! pom’rer 'E‘Vithjl’l the file
corresponding to index 3. The
pointer will move forward 100 bytes
from the current location.

Comments

Attempting to reposition the file pointer before the beginning of the
file will result in an error.

When using this command with a TEXT file, seek with an offset of 0
relative to any of the origin values or seek with an offset from a
previous FTELL command relative to the beginning of the file.

This command can be tested with the IF SUCCESS statement,
returning “FALSE” if seek errors occur.

See also

FTELL, FOPEN and REWIND.

FSTRFMT

M

Similar to STREMT and FATSAY, this command writes a formatted
string to the file referenced by the provided index number.

FSTREMT index formatstr [param]..[param]

Example

Writes the string to the file indexed as
0 with value substitution (as
indicated by the format specifiers).

integer inum
fstrimt 0 "ITEM no. %d" Inum

Comments

For more information on the format specifiers available for
FSTRFMT, please refer to the definition for the FATSAY command.

= 89

ASPECT SCRIPT LANGUAGE REFERENCE

This command can be tested with the IF SUCCESS statement,
returning “FALSE” if the data cannot be written to the file.

See also
STRFMT and FATSAY.

RETELL
Returns the current file pointer position of the file corresponding to
the specified file index into a long variable.

FTELL index longvar

Example
long loc Returns the pointer position of the file
ftell 2 Joc corresponding fo index 2 info the
< long variable LOC.
Comments

The long variable contains the number of bytes past the beginning
of the file,

If the file is opened in TEXT mode, carriage return/line feed
translations may cause the physical offset to be incorrectly
reported; however, FTELL can be used together with FSEEK to store
and return to a particular file location.

See also
REWIND, FOPEN and FSEEK,

FTOA

i _I“

i Converts a float to an ASCII string and stores it in a string variable,
FTOA float strvar

See also

ATOF.

Script Reference

FWRITE

Writes a block of data to a file.

FWRITE index string length
A string or string variable that

string contains the block to be written.

length The size in bytes (an integer value
between 1 and 80) of the block to be
written.

Example

string block1 Writes 30 characters from BLOCK]1 to

futite 0 blockd 30 the output file specified by index 0.

Comments

This command can be tested with the IF SUCCESS statement, which
returns “FALSE” if the string cannot be written.

See also
FOPEN, FSEEK, FREAD, FSTRFMT, FPUTC and FPUTS.

GE

T B e e e e e e e e W e o)

Performs relational testing (“greater than or equal to”) on two
numeric values.

GE number number intoar

Comments

The integer variable will be initialized to 0 for “FALSE” and 1 for
IITRUE!!-

The conditional form of this command is “IF/ELSEIF/WHILE GE
NUMBER NUMBER”, and the symbol “>=" acts as the operator form.

See also

LT, GT and GE.

ASPECT SCRIPT LANGUAGE REFERENCE

GET

2w

Receives and stores a text string or number up to 80 characters in
length, entered by the user at the keyboard.

GET strvar| numvar [length]

A numeric value which determines
the maximum number of characters
to be accepted. If this optional
parameter is omitted, the default
value of 80 characters is used. A beep
will sound if the user attempts to
enter more than the specified number
of characters.

length

Example

gets3 1 Stores a single keystroke entered by
the user in the predefined string
variable S3.

Comments

When responding to a GET command, the user must enter a carriage
return to signal the completion of the input. The carriage return is
not included in the text string stored in a string variable.

GET accepts only ASCII characters; function keys and non-
displayable characters are not allowed.

The cursor position will remain at the location where the user

pressed or .

GET can be exited with the key (the statement IF FAILURE
returns “TRUE").

For more information, see the ATGET command.

See also
ATGET, KEYGET, MATGET, MGET and RGET.

Script Reference

GETCUR

M

Returns the cursor’s current row and column values into the first
and second numeric variables, respectively.

GETCUR intvar intvar

Example

getcur rows cols Places the current cursor row and
column values in the numeric
variables ROWS and COLS.

Comments

These values are also available directly through the system

variables $ROW and $COL.

The LOCATE command can restore a cursor position saved with

GETCUR.

See also

LOCATE, $ROW and $COL system variables.

GETDIR

M

Returns the current working directory path of the specified drive
into a string variable.

GETDIR disk strvar

disk An integer number designating the
drive; 0 indicates the current drive, 1
specifies drive A, 2 for drive Band so
on.

Example

string path Places the working path and directory
di h for the current drive into the string
getdir 0 pat variable PATH.

ASPECT SCRIPT LANGUAGE REFERENCE

Comments

You can test for possible drive access errors with the statements IF
SUCCESS or IF FAILURE,

See also
FINDFIRST, FINDNEXT, DISKFREE and CHDIR.

GETENV
M

Returns the contents of an environment variable definition into a
string variable.

GETENV string stroar
An environment variable currently

string defined through DOS.
Example
string env Places the current value for th'e
., - environment variable PCPLUS into the
getenv “pcplus” env string variable ENV.
Comments
GETENV returns a null string if the environment variable doesn’t
exist,
The environment variable is forced uppercase (even if supplied in
lowercase).
See also
PUTENV.
GETFATTR

m

Returns the attributes of a specified file into a string variable.

GETFATTR filespec strvar

: A fully-qualified single filename;
filespec wildcards are not allowed.

94 =

Script Reference

Example

getfattr "RBBS.LOG" attr Places the current attributes for the
file RBBS.LOG into the string variable
ATTR.

Comments

Attributes can include “R” (Read-Only), “H” (Hidden), “5”
(System), “A” (Archive), “D” (Directory) and “V” (Volume).

The statements IF SUCCESS or IF FAILURE can test for the successful
return of the attribute information.

GETFDATE

ﬁ
Returns the date stamp of a specified file into a string variable.
GETFDATE filespec strvar

string A fully-qualified single filename;
wildcards are not allowed.
Example
- ' Places the date stamp (in the format
MLC.DAT" bd P
getidate "NLC e sxxx-xx) of the file MLC.DAT into
the string variable BDATE.

x 95

ASPECT SCRIPT LANGUAGE REFERENCE

GETFILE

Receives (or “downloads”) a file from a remote computer using the

indicated transfer protocol.

GETFILE protocol [filespec]

protocol

Examples

waitfor "Begin transfer!”
getfile zmodem

waitfor "Kermit-32>"

message "Enter file to transfer”
get 51

transmit "SEND"

transmit 81

transmit "AM"

getfile kermit

9% »

The following protocols do not
require a filespec:
EXTPROTO1
EXTPROTO2
EXTPROTO3
YMODEM
YMODEMG
SEALINK

KERMIT

TELINK

MODEM7
ZMODEM

CIsB

The following protocols do require a
filespec:

TKXMODEM filespec

1IKXMODEMG filespec

IMODEM filespec

XMODEM filespec

WXMODEM filespec

ASCH filespec

RASCII filespec

Uses GETFILE with ZMODEM.

Uses GETFILE with KERMIT.

Script Reference

Comments

Note that many of the protocols require either a valid DOS filespec
or a variable containing a filespec. A path may be specified; if
omitted, PROCOMM PLUS uses the default download directory
specified in Setup. For the other protocols, a filespec should ot be
specified, since the remote system supplies the filename.

GETFILE can be tested with the IF SUCCESS and IF FAILURE statements,

Pre-existing files can pose a problem if you're using the ZMODEM
transfer protocol. If a file you're receiving already exists and crash
recovery is not enabled, the file will be skipped—however, the IF
SUCCESS statement will still return a value of “TRUE”. To avoid
this, use the ISFILE command to determine if the file already exists
on your system before the transfer—then delete it before using
GETFILE. For more information on crash recovery, see “ZMODEM
Protocol Options” in Chapter 8 of your USER MANUAL.

See the appendix “File Transfer Protocols” in your USER MANUAL
for more information on each protocol. For the numeric values
returned by a FETCH PROTOCOL statement, please refer to the
definition for FETCH in this chapter.

See also

SENDFILE.

GETFSIZE

e T T T e e e T
Returns the size of a specified file into a long variable.

GETFSIZE filespec longvar
A fully-qualified single filename;

filespec wildcards are not allowed.

Example

long size Places the size of the file PCPLUS.DIR
. A (in bytes) into the long variable SIZE.

getfsize "peplus.dir” size

Comments

GETFSIZE can be tested with the IF SUCCESS and IF FAILURE
statements.

ASPECT SCRIPT LANGUAGE REFERENCE

GETFTIME

Returns the time stamp of a specified file into a string variable.

GETFTIME filespec strvar

; A fully-qualified single filename;
filespec wildcards are not allowed.

Example

string ft Places the time stamp (in military 24-
titime "ROB.TXT" ft hour format) of the file ROB.TXT into

getiime ' the string variable FT.

GETVATTR

Returns the display attribute from the specified screen coordinates
into an integer variable.

GETVATTR row column intoar

Example
integer color Places the attribute for the character
tir 5 8 col at row 5, column 8 into the numeric
getvattr 3 8 color variable COLOR.
See also
GETVCHAR and PUTVATTR.
GETVCHAR

Returns the decimal value of a character from the specified screen
coordinates into an integer variable.

GETVCHAR row column intvar

98 w

Script Reference

Example
integer letter Places the decimal value of the
tvchar 9 1 letter character at row 9, column 1 into the
getvehar € numeric variable LETTER.
See also

GETVATTR and PUTVCHAR.

GOSUB

i B A e T e e e e

Provides an unconditional branch to the specified procedure with
return.

GOSUB name [WITH param[param)...[param]]

Comments

GOSUB is a synonym for the CALL command. It has been retained
for backward compatibility with previous versions of PROCOMM
PLUS—however, since GOSUB may be removed in future versions of
ASPECT, it's recommended that you use CALL instead.

See also
CALL.

GOTO

M

Performs an unconditional branch to the specified label within the
current procedure.

GOTO name

A label within the current procedure.
Labels provide a point to which the
GOTO command directs program
control.

name

= 99

ASPECT SCRIPT LANGUAGE REFERENCE

Example

if not waitfor
goto error_exit
endif

error_exit:
message "Abnormal termination”
hangup
quit

Comments

When PROCOMM PLUS encounters a GOTO command, it jumps to the
location where the label is defined, resuming execution with the
command immediately following the label.

A label can only be referenced within the procedure where it’s
defined (for non-local branching, use the SETJMP and LONGJMP
commands). Labels can’t be placed between CASE statements in a
SWITCH command block, or between procedure blocks.

See also
SETJMP, LONGIMP and CALL.

GT

SR e AR S i e
Performs relational testing (“greater than”) on two numeric values.

GT number number intvar

Comments

The integer variable will be initialized to 0 for “FALSE” and any
non-zero value for “TRUE".

The conditional form of this command is “IF/ELSEIF/WHILE GT
NUMBER NUMBER”, and the symbol “>” acts as the operator form.

See also

GT and LE.

100 =

Script Reference

HANGUP

Disconnects your computer from the telephone line by dropping
your medem’s Data Terminal Ready (DTR) line. The command
then tests the Carrier Detect (CD) and, if the modem is still
connected, sends the hang-up string defined in Setup.

HANGUP

Example
hangup Disconnects the telephone line.
Comments

The default hang-up string (which should work for Hayes and
compatible modems) is ~~~+++--~ATH0*M. Use the IF CONNECTED
statement to determine if the disconnect was successful.

See also
SET MODEM HANGUP.

HELP

Displays the PROCOMM PLUS Command Menu help screen, allowing
access to On-line Help.

HELP

HOME

Moves the cursor to the first row and column on the screen.

HOME

See also

CURDN, CURLF, CURRT, CURUP and RCA.

ASPECT SCRIPT LANGUAGE REFERENCE

HOOK

Executes an external program, passing the segment and offset of
the current PROCOMM PLUS Setup structure as an argument.

HOOK string
Example
hook "FASTXFER" ﬁ%ﬁe external program
Comments

HOOK allows you to execute external programs specifically written
to utilize and/or change information on the current settings in
PROCOMM PLUS, including the current COM port and baud rate.

HOOK can also utilize and /or change the values in the predefined
variables (S0 to S9 and NO to N9), allowing an information channel
between HOOKed programs and currently-executing scripts.

See also
METAKEY, RUN and EXECUTE.

HOST

Places PROCOMM PLUS in Host mode.
HQOST

Comments

By creating a script containing this command, you can
automatically switch to Host mode when you start PROCOMM PLUS
(or you can start PROCOMM PLUS in Host mode at a particular time).

You can test the HOST command for SUCCESS or FAILURE; FAILURE is
set if a privileged user aborted Host mode or if the key was
pressed to abort Host.

Several system variables can provide information on the last caller
that successfully logged on to Host; see the section titled “System
Variables” at the end of this chapter.

Script Reference

IF
Executes the commands on the following line if the condition is true.
IF condition
[ELSEIF condition]
[ELSE]
ENDIF
Commands on the lines following this
ELSE
command are executed when the
condition tested by the IF command is
“FALSE”,
ELSEIF Branches to another If command
block.
ENDIF Concludes the IF command phrase.

A condition consists of a command word and its parameters or a
numeric expression; you may also include the optional NOT and
ZERO parameters. If a command or expression is evaluated as a
non-zero value, it was satisfied (or “TRUE”). A zero value

indicates that the conditional test was not satisfied (or “FALSE").

[NOT | ZEROQ)] {expression | math | EOF index | NULL strvar}

NOT - May be employed with any condition. The effect of the NOT
is to reverse the value of the condition. For example, when
CONNECTED is “TRUE", then NOT CONNECTED is “FALSE”. The
conditions NOT SUCCESS and FAILURE are exactly the same.,

ZERO - Tests whether a numeric variable has a value of zero.
ZERO and NOT are functionally equivalent.

ASPECT SCRIPT LANGUAGE REFERENCE

M4 =

math - Can be one of the following: ADD, AND, ANDL, COMP, DEC,
DIV, EQ, GE, GT, INC, INIT, LE, LT, MOD, MUL, NEG, NEQ, NOT, OR, ORL,
SHL, SHR, SUB, XOR or ZERO. For most of these commands, the
required parameters should be included except for the “result”
variable; DEC, INC and INIT require all parameters in the condition.
For more information on math commands, please refer to the
Operator Appendix and their definitions elsewhere in this chapter.

condition - commonly-used conditions for the IF command include
the following system variables and commands: CONNECTED,
COMDATA, FROMDDIR, EOF index, FAILURE, FOUND, HITKEY, MONO,
NULL string, SUCCESS and WAITFOR.

The CONNECTED condition is true if CD (Carrier Detect) is high. CD
is normally high only when you're connected to a remote system.
If your modem forces CD high (usually a dip switch setting) the
CONNECTED condition will always be “TRUE".

The EOF condition tests for the end-of-file on the file corresponding
to the provided index number See the definition for EOF for more
information.

The FAILURE condition is considered “TRUE” if the last tested
command was not successfully completed.

The FOUND condition is used to test the result of the last FIND
command executed. It is considered “TRUE" if the “target” was
found in the specified string variable. Please see the FIND
command for further information.

The HITKEY condition is considered “TRUE" if a key has been
pressed and remains in the input buffer.

If you execute a script from a Dialing Directory entry, the FROMDDIR
condition will be “TRUE” anywhere within that script. The
primary use for FROMDDIR is to allow a script to be executed
either independently or “attached” to a Dialing Directory entry.

The MONO condition is evaluated as “TRUE” if a monochrome
monitor is connected.

The NULL condition tests a string for no contents. See the definition
for NULL for more information.

The SUCCESS condition is evaluated as “TRUE” if the last testable
command was successfully completed.

The WAITFOR condition checks the result of the last WAITFOR
command. If the “target” specified in the WAITFOR command is
received, the WAITFOR condition is “TRUE”; if the WAITFOR
command times out before receiving the “target”, the condition is
“FALSE”. For more information, please refer to the definition of
the WAITFOR command.

Examples

run "someprog”
if success

endif

loop:

while not hitkey

endwhile

if not fromddir
dial "5"

endif

initn1 10

while {n11=0)

-n1
endwhile

if mono
clear?7
endif
if total > 25
call printdata
endif

Comments
as “FALSE”.

See also

Script Reference

Executes if the program SOMEPROG
ran successfully.

Execution loops endlessly until a key
is pressed.

Does not execute if the script file was
started via a Dialing Directory link.

This segment will loop until N1 = 0.

Executes the CLEAR command if a
monochrome monitor is connected.

Branches to a subroutine if the value
of TOTAL is greater than or equal to
25.

Each IF command must end with an ENDIF command and can
optionally be used with an ELSE or ELSEIF command. The command
following the ELSE is executed if the specified condition evaluates

There is no practical limit on the number of nested IF commands
within a script.

ELSE, ELSEIF, ENDIF and SWITCH.

= 105

ASPECT SCRIPT LANGUAGE REFERENCE

$IFDEF

T e e e e e e e e

Allows conditional compilation by testing for the existence of a
DEFINEd macro name. For more information, see the DEFINE
command.

SIFDEF

INC
w
Increments a numeric variable by one.

INC numvar

Comments

It is possible to increment a number beyond the range of valid
integers; PROCOMM PLUS does no error checking on this value.

The operator form of “INC N0” is “NO++".

See also
DEC and ADD.

INCLUDE

e e e Y e e e e e U

Merges commands from ASPECT source files during compilation.
INCLUDE “filespec”

Example

Merges the commands found in the
file COLOR.H with the current script.
Note that this must be a quoted
string,.

include "color.h™

Comments

Each INCLUDE may contain further INCLUDE commands. You can
nest INCLUDE commands up to 10 levels deep.

INCLUDE commands can occur within or outside of a procedure
block.

106 =

Script Reference

INCLUDE can be used to set up source “header” files—much like the
“C” programming language—which contain a set of DEFINE
commands; you can easily INCLUDE these header files in different
ASPECT scripts without having to duplicate the work.

Another use of INCLUDE is the creation of a “library”—procedures
commonly found in many of your scripts. Since ASPCOMP will not
generate output for procedures that aren’t called, your library can
be as large as you like without adding to the size of the compiled
ASX script.

The filespec must be a quoted string, but it does not require the .Asp
extension.

See also
DEFINE.

INIT

e P e T e N R g Ty
Initializes a numeric variable.

INIT numvar number

Examples

init NO 330 Initializes NO to 330 and then also

init N1 NO initializes N1 to 330. The operator
form of the first statement would be
N0=330.

Comments

It is possible to initialize a variable outside of the valid range
allowed by the numeric variable; ASPECT does no error checking on
this value. Values outside of the valid range will be truncated to fit
the variable limits.

L‘ | The operator form of the statement “INIT N0 330" is “N0=330".

See also
ASSIGN and STRCPY.

ASPECT SCRIPT LANGUAGE REFERENCE

INPORT
Reads data from the specified I/O port.
INPORT port intvar

Examples

inport 0x318 char Reads a byte from the port with
address 0X3F8 into the integer
variable CHAR.

Comments

The first integer identifies the port address (in decimal or hex
format). The value is treated as unsigned, ranging from 0 to
65535. Port values greater than 32767 must be entered as
hexadecimal.

See also
OUTPORT.

INSCHAR

Inserts a character at the current cursor position. Any text from the
current cursor to the end of the line will be shifted one column to
the right.

INSCHAR

See also
DELCHAR, DELLINE and INSLINE.

INSLINE

108 »

Inserts a new line at the current cursor position. Any text on the
current line will be scrolled up to the previous line.

INSLINE

See also
DELCHAR, DELLINE and INSCHAR.

Script Reference

INTEGER

Defines a global or local integer variable.
INTEGER name[=expression][name[=expression]]...

An initializer expression. For
numeric types, it can specify
operators, constants or previously-
declared numeric variables.

[=expression]

Examples

integer item Defines the integer global variable
ITEM.

Comments

For more information on using global and local variables, please
refer to the definition for FLOAT.

See also
INTPARM, LONG, FLOAT and STRING.

- % INTPARM

W

Defines a integer parameter variable.

INTPARM namel namel]...[name]

Examples

Defines the integer parameter

intparm count
P COUNT.

Comments

Any procedure—except MAIN—can be defined with up to 10
parameter variables. Parameter variables are similar to local
variables in that they may only be referenced within the procedure
in which they’re defined; unlike local variables, though, the value
of parameters are automatically initialized when the procedure is
called.

For more information on using parameter variables, please refer to
the definition for FLOATPARM.

e

ASPECT SCRIPT LANGUAGE REFERENCE

See also
LONGPARM, FLOATPARM and STRPARM.

ISFILE

Determines if a file exists in the current (or specified) directory.

ISFILE filespec

; Any valid DOS path and/or filename,
filespec including extension.

Examples

isfile "MARK.DOC"
if success

message "Doc file exisis"
else

message "Doc file not found"
endif
message "Enter filename"
get S0 Variable S0 stores the filename.
isfile S0
if not success

message "File does not exist”
endif

Comments

You can include a path specification with the filespec. Use the IF
SUCCESS and IF FAILURE statements to test the results of the ISFILE
command.

ITOA

Converts an integer to an ASCI string and stores it in a string
variable.

ITOA integer stroar

See also
FTOA, LTOA, ATOI and STREMT.

10 »

Script Reference

KERMSERVE

%
Issues a KERMIT server command.
KERMSERVE (SENDFILE filespec |GETFILE filespec | FINISH | LOGOUT}

SENDFILE filespec Sends a file to a remote system.
filespec is any valid DOS filename,
including the extension.

GETFILE filespec Receives a file from a remote system.
filespec is any filename that’s valid on
the remote system.

FINISH Logs out of KERMIT server mode.

LOGOUT Logs out of KERMIT server mode and
logs off Host,

Example

message "File to send?”

get sfil Stores the filename in variable SFIL,

kermserve sendfile sfil transfers the file and issues the FINISH

kermserve finish SERVER command.

Comments

This command phrase will only work if the host is in the KERMIT
- server mode.

KERMSERVE can be tested with the IF SUCCESS and IF FAILURE
statements.

KEY2ASCII

M

Converts an integer to the ASCII character it represents and places
the result into a string variable.

KEY2ASCII integer strvar

Example
string chared ds the val
Reads the value of the numeric
integer numval integer NUMVAL and places the
key2ascii numval charcd corresponding ASCII character in the
string variable CHARCD.

s 111

ASPECT SCRIPT LANGUAGE REFERENCE

Comments

If the integer value is greater than 255, it's converted to a 4-digit
hexadecimal string.

See also
TERMKEY, SET KEYS and KEYGET.,

KEYGET

Receives a key pressed by the user and (if requested) stores it in the
specified integer variable.

KEYGET [intvar]

Comments

This command lets you get a single keystroke without requiring
that the user terminate a series of keystrokes by pressing
(which is necessary with GET). The value placed in the numeric
variable depends upon the key pressed.

To place the AsCII character corresponding to a key value into a
string variable, use the KEY2ASCII command.

The key sequence will always call On-line Help, and will
not be returned as a key code; it will remain in effect until the user
presses a key other than .

See also
KEY2ASCII, GET, MATGET, TERMKEY, SET KEYS, MGET and RGET.

KFLUSH

112 »

Clears accumulated keystrokes from the keyboard buffer. Any
unprocessed keystrokes that have been entered will be lost.

KFLUSH

See also
KEYGET, HITKEY system variable and RFLUSH.

Script Reference

KLOAD

LE

Loads a different Keyboard Map file.
KLOAD filespec

Comments
The .KBD file extension is optional.

If the directory does not exist (either in the current directory or in
the directory specified with the “SET PCPLUS=" environment
variable}, KLOAD will create an empty directory with that name.

Performs relational testing (“less than or equal to”) on two numeric
values.

LE number number intvar

Example

‘ . Tests the the values PRICE and

t , subtotal .
., egfr price, subloa SUBTOTAL, placing the result in the
price=117 - - -
subtotal=15 predefined numeric variable N1.
Since 117 is not less than or equal to

le price subtotal ni
ri 15, N1 will be initialized to 0.

Comments

The integer variable will be initialized to 0 for “FALSE” and 1 for
{JT’R‘U‘EPI-

The conditional form of this command is “IF/ELSEIF/WHILE LE
NUMBER NUMBER”, and the symbol “<=" acts as the operator form.

See also

LT, GT and GE.

w 113

ASPECT SCRIPT LANGUAGE REFERENCE

LINEFEED

Moves the cursor down one line. If the current line is the last line
of the screen, this command may scroll the screen (depending on
the current emulation and the SET SCROLL option).

LINEFEED

See also
CURDN. -

LOCATE

Positions the screen cursor to the location specified by row and
column,

LOCATE row column

Example

clear Clears the screen and locates the

locate 10 20 cursor at row 10, column 20.

message "Enter choice:" Displays the message.

'°‘;ats‘;1° 44 Positions the cursor at row 10,

ge column 44 (at the right of the prompt)
for user input.

Comments

Characters received from the remote system are displayed at the
current cursor position.

Note that some commands (like BOX) write directly to the screen
(without affecting the current cursor location); other commands
(like TERMWRT) update the cursor location when executed.

See also
GETCUR, $ROW and $COL system variables.

LOG

Script Reference

Controls session lggging during script file execution. The log file is
a continuous record of all characters received and transmitted.
Note that a SET DISPLAY OFF command in a script will disable the log
tile.

LOG {OPEN [filespec] | CLOSE|SUSPEND | RESUME}

Opens the log file and begins logging

OPEN data. This parameter can be tested for
successful completion with IF
SUCCESS| FATLURE.

The optional filename lets you specify
(filespec] the 1o§ filename. If this parametle}f is
not included in the command,
PROCOMM PLUS uses the default
filename specified using the Setup
facility (see “File/Path Options” in
Chapter 8 of your USER MANUAL).

CLOSE Turns off file logging and closes the
log file.
Temporarily halts logging of text
SUSPEND without closing the log file.
RESUME Continues logging after a SUSPEND
command.
Examples
log open Begins logging to default log file.
log open "newlog.txt" Begins logging to file NEWLOG.TXT.
LOG SUSPEND
i.OG RESUME
Comments

If the log file already exists, the new data is added to the end of the
existing file.

See also

SET DISPLAY and SNAPSHOT.

ASPECT SCRIPT LANGUAGE REFERENCE

LONG

Defines a global or local long variable.

LONG name[=expression][,name[=expression]]...

=expression] An initializer expression. It can
specify operators, constants or
previously-declared numeric
variables.

Examples

long location Defines the long variable
LOCATION.

Comments

For more information on using global and local variables, please
refer to the definition for FLOAT.

See also
LONGPARM, INTEGER, FLOAT and STRING.

LONGJMP

Returns to a location within a script previously marked with a |

SETJMP command.
LONGJMP index integer

index One of three integer index values (0,1
or 2); the value identifies the SETJMP
location for this LONGIMP.

integer An integer value to return to the
SETJMP command; this allows further
processing by statements following
the SETJMP.

Example
referenced by the index number 0.
The SETJMP command’s second
parameter will receive the integer
value 2.

116 w

Script Reference

Comments

The marked location is the command following the SETJMP. Up to
three SETJMP locations can be active at once.

The marked location remains active until a return from the function
where it was set—or until another routine uses a SETJMP with the
same index.

See also

GOTO, RETURN and SET]MP.

LONGPARM

Defines a long parameter variable.

LONGPARM name[,namel...name]

Examples

Defines the long parameter
longparm memory MEMORY.
Comments

Any procedure—except MAIN—can be defined with up to 10
parameter variables. Parameter variables are similar to local
variables in that they may only be referenced within the procedure
in which they’re defined; unlike local variables, though, the value
of parameters are automatically initialized when the procedure is
called. :

= 117

ASPECT SCRIPT LANGUAGE REFERENCE

For more information on using parameter variables, please refer to
the definition for FLOATPARM,

See also

INTFPARM, FLOATPARM and STRPARM.

LOOPFOR
B e e N ——

Increments or decrements the control variable in a FOR command
block. If another iteration should be performed, execution
continues with the command following the FOR command. See the
FOR command for further information.

LOOPFOR

LOOPWHILE
R el S T —

Increments or decrements the control variable in a WHILE command
block. If another iteration should be performed, execution
continues with the command following the WHILE command. See
the WHILE command for further information.

LOOPWHILE

LT -
m
Performs relational testing (“less than”) on two numeric values.

LT number number infvar

Example
integer price,subtotal Tests the the values PRICE and
oo SUBTOTAL, placing the result in the

price=10 ;) ;

subtotal=15 predefined numeric variable N1.

It price subtotal ni Since 10 is less than 15, N1 will be
initialized to a non-zero value.

Comments

The integer variable will be initialized to 0 for “FALSE” and any
non-zero value for “TRUE”.

118 =

Script Reference

The conditional form of this command is “IF/ELSEIF/WHILE LT
NUMBER NUMBER”, and the symbol “<” acts as the operator form.

See also

GT and LE.

LTOA

Converts a long to an ASCII string and stores it in a string variable.

LTOA long strvar

See also
ATOL.

MATGET

e e e A . T e B B P R P U =3 e S s s s e

Relocates the cursor to a specified row and column, gets a text
string or number entered by the user at the keyboard and stores it
in the specified variable. The input is masked by echoing asterisks
(*) on the screen.

MATGET row column attribute length strvar|numovar

length A numeric value between 1 and 80
that determines the maximum
number of characters that will be
accepted. A beep will sound if the
user attempts to enter more than the
specified number of characters.

The variable where the text string or

stroar | numvoar X
number is stored.

Comments

This command is similar to ATGET; however, MATGET masks the
input data.

The cursor position will remain at the location where the user
pressed (Enter) or (Ea3).

MATGET can be exited with the key (FAILURE is set “TRUE").

s 119

ASPECT SCRIPT LANGUAGE REFERENCE

See also
ATGET, GET, KEYGET, and MGET.

MDIAL
M

Calls the specified telephone number (“manual dial”).

MDIAL “[ldcode]lnumber{ldcode]” | stroar [message]

The telephone number of the
computer you want to call.

ldcode A dlallllg COdE (-'-:':ee ”Add}.flg or
Changing a Dialing Code” in Chapter
6 of your USER MANUAL).

A variable, which you can set to a
valid telephone number and use in
place of a quoted string.

An optional string displayed in the
Directory window while PROCOMM
PLUS is dialing the number. This
string typically contains the name of
the BBS or on-line service you're
calling.

number

stroar

[message]

Examples
mdial "555-1234" Dials the telephone number 555-1234.

mdial "A555-1234" Dials dialing code A and then the
telephone number 555-1234.

: : Calls the telephone number 555-1234
ffnot Tded[r . " (unless the scI;ipt file is executed via
mdial "555-1234" "WORK the Dialing Directory). The message
ondit "WORK" appears in the directory
window while the number is dialed.

Comments

Use the IF NOT FROMDDIR statement to prevent the MDIAL
command from redialing if the script file being executed is linked
to a Dialing Directory entry (see the last example above).

MDIAL accepts only a single telephone number; for multiple Dialing
Directory entry numbers, use the DIAL command.

See also
DIAL and REDIAL.

120 m

Script Reference

MEMFREE

e e T e e e R e By

Returns the amount of free memory (or RAM) available for running
other programs into a long variable.

MEMEFREE longvar

Example

long mem Returns the current free RAM
memfree mem available into the long variable

fatsay 10 20 30 "%Id bytes" mem MEMORY.
See also
DISKFREE.

MEMPEEK

m
Returns the value of a single byte at the specified memory address.
MEMPEEK segment offset intvar

Example

mempeek 0 0x0417 byte Returns the value of the byte at
segment 0, offset 0x0417 into the
integer variable BYTE.

Comments

Both segment and offset can be entered in decimal or hex form;
they're treated as unsigned values.

See also

MEMPOKE and MEMREAD.

ASPECT SCRIPT LANGUAGE REFERENCE

MEMPOKE
e e P e e

Sets the value of a single byte at the specified memory address.
MEMPOKE segment offset character

Example

mempoke 0x40 Ox1E byte Sets the value of the byte at segment
0x40, offset Ox1E to the value
specified in BYTE.

Comments

Both segment and offset can be entered in decimal or hex form;
they’re treated as unsigned values.

See also
MEMPEEK and MEMWRITE.

MEMREAD
m

Returns the values beginning at the specified memory address into
a string variable.

MEMREAD segment offset strvar length

Example

memread 0xFOO0 OXFFF5 adate 8 Returns the value of the first 8 bytes
beginning at segment 0xF000, offset
OxFFF5 into the string variable
ADATE.

Comments

Both segment and offset can be entered in decimal or hex form;
they’re treated as unsigned values.

The contents of the string can be examined with the STRPEEK
command.

See also

MEMPEEK, MEMWRITE and STRPEEK.

122 =

Script Reference

MEMWRITE

H

Sets the values beginning at the specified memory address from the
contents of a string,

MEMWRITE segment offset string length

Example

memwrite 0x40 Ox1E outbytes 16 Sets the value of the first 16 b)’fES
beginning at segment 0x40, offset
0x1E from the string OUTBYTES.

Comments

Both segment and offset can be entered in decimal or hex form;
they’re treated as unsigned values.

The contents of a string variable can be set using STRSET and
STRPOKE.

See also

MEMREAD.

MESSAGE

N

Displays text on the local screen, without sending it to the remote.
The message is displayed at the current cursor position in the
current colors. MESSAGE appends a CR/LF to each text string
(unless you SET MSG_CRLF OFF).

MESSAGE string

A series of characters to display. The
string may contain control characters
(such as CR and LF) by using the
translation conventions described
under “Translating Control Codes” in
your USER MANUAL.

string

ASPECT SCRIPT LANGUAGE REFERENCE

Examples

message "+ +
message "| Enter your cholce: |"
MESSAGE "+ +"

locate 2 20

get S0 1

assign 59 "This Is line one~MAJThis Is the second”
message 59

Comments
"M sends a carriage return, while #J is a line feed.

Use the MESSAGE command for prompts, informational messages
and building menus.

See also
SET MSG_CRLF, ATSAY, FATSAY and LOCATE.

METAKEY
m

Executes the specified Meta key.
METAKEY integer

integer Any integer value from 0 to 9.

Examples

metakey 5 Sends Meta key assigned to Alt-5.

init ng 2 Stores a Meta key number in N8 and

metakey n8 then sends the Meta key sequence
assigned to Alt-2.

Comments

Use the MLOAD command to load individual keyboard Meta key

files.

METAKEY can only be used with Meta key entries that don’t execute

other scripts.

See also

MLOAD,

124 m

Script Reference

MGET

M

Receives a text string or number entered by the user at the
keyboard and stores it in the specified variable. MGET prevents
anyone from reading the entry on the screen by “masking” the
entry with asterisks (*).

MGET strvar | numvar [length]

The variable into which the string or
number received from the user is
placed.

length A numeric value which determines

the maximum number of characters

that will be accepted. If this optional
arameter is omitted, the default

value of 80 characters is used. A beep
will sound if the user attempts to
enter more than the specified number
of characters.

stroar| numvar

Example

message "Enter the password”

mget S9 8

find S9 "secret”

IF NOT FOUND
message "You're not an authorized user!”
quit

endif

Comments

MGET is useful for security-related information; for example, user
passwords.

The cursor position will remain at the location where the user

pressedor.

MGET can be exited with the (Esc) key (the statement IF FAILURE
returns “TRUE").

See also

ATGET, GET, KEYGET, and MATGET.

ASPECT SCRIPT LANGUAGE REFERENCE

MKDIR |

M
Creates a new directory using a path and/or directory name you
provide.

MKDIR (filespec

Example

mkdir "temp” Creates the directory TEMP (within
the current working directory).

Comments

If a path is not provided, PROCOMM PLUS creates the directory
within the current working directory.

The result of a MKDIR command can be tested with the IF SUCCESS
and IF FAILURE statements.

See also
RMDIR, CHDIR and GETDIR.

MLOAD
m

Loads the specified keyboard Meta key file.
MLOAD filespec

filespec Any valid DOS filename.
Example

mload "SYSTEM1.KEY" Loads a new Meta key file.
Comments

If the file doesn’t exist, it will be created. The KEY extension is not
required.

This command can be tested with the IF SUCCESS statement,
returning “FALSE" if the specified Meta key file can’t be read (or
created) in either the current directory or in the directory specified
with the “SET PCPLUS=" command in the AUTOEXEC.BAT file.

12 m

Script Reference

MOD

T e e e T S L e P P e e e OO R S e e T]

Returns the remainder after division (called the “modulus”) into a
numeric variable.

MOD number number numvar

Example

integer leftover Divides 10 by 7 and places the

mod 10 7 leftover remainder in the numeric variable
LEFTOVER. The operator form
would be LEFTOVER=10%7.

Comments

For floats, integers and longs, the remainder has the same sign as
the number being divided (the dividend); its absolute value is
always less than the absolute value of the divisor.

See also
DIV, CEIL and FLOOR.

MSPAUSE

w

Pauses script execution for the specified number of milliseconds.
MSPAUSE integer

Example
Pauses the execution of the script for
100
mepase 100 milliseconds.
Comments
Unlike the PAUSE command, MSPAUSE can’t be aborted with the
key.
See also

PAUSE.

w 127

ASPECT SCRIPT LANGUAGE REFERENCE

MUL
M

Multiplies the first two numbers and stores the result in the last
numeric variable.

MUL number number numuvar

Comments

It is possible to multiply two numbers and have the result outside
the range of the specified numeric variable; PROCOMM PLUS does no
error checking on this value.

The statement “MUL NON1 N2” has the equivalent operator form
“N2=NO*N1”.

See also

DIV.

NEG
M

Negates the value of the specified number and places the result in a
numeric variable.

NEG number numovar

Comments

The command form “NEG NON1” is equivalent to the operator form
s , “N1=-N0".

See also
SUB and COMP.

128 =

Script Reference
NEQ
W
Tests two numeric values for non-equality.

NEQ number number intvar

Example

integer first, second Test.s the values F];RST and SECOND,

neq first second n1 placing the result in the predefined
numeric variable N1.

Comments

The integer variable will be initialized to 0 for “FALSE” and any
non-zero value for “TRUE”.

The conditional form of this command is “IF/ELSEIF/WHILE NEQ
NUMBER NUMBER”. The statement “NEQNON1N2” has the equivalent
operator form “N2=N0l=N1".

See also

EQ.

NORMON

M
Turns on the normal attribute for Terminal mode display.

NORMON

See also
REVON, ULINEON, DIMON and BLANKON.

NOT

N

Performs a logical NOT operation on a number. The numeric
variable is assigned 1 if the number is 0, and 0 if the number is non-
Zero.

NOT number intvar

Comments

NOT and ZERO function identically.

ASPECT SCRIPT LANGUAGE REFERENCE

The command form “NOT NoN2" is equivalent to the operator form
“N2=INO”.

See also

ZERO.

NULL
R e e T e T a2 L e S e et L5 2 2 o L B 0 0]

Tests a string variable for the null condition (no contents).

NULL string intvar

Example
Tests the contents of the predefined

null s1 result P
string variable 51 for null. The result
is placed in the integer variable
RESULT.

while null s1 Forces a response to the ATGET

atget 10 20 15 10 s1 statement.
endwhile
Comments

The integer variable will be initialized to 0 (meaning “FALSE") or 1
(meaning “TRUE”, or no contents) after the test.

The conditional form of this command is “IF NULL STRVAR”.

OR
m

This command performs a bitwise comparison of two numbers and
places the result in the specified numeric variable. For each two
bits compared, the resulting variable is assigned the value 1 or 0 in
the same corresponding bit position. A 1 is assigned if either or
both bits are 1, while a 0 is assigned if both of the bits are 0.

OR number number numvar
Comments

OR cannot be used with floating point numbers.

The command form “ORNON1N2” is equivalent to the operator form
“N2=N0OIN1".

130 »

Script Reference

See also

XOR and AND.

ORL

Performs a logical OR operation on two numbers and places the
result in the specified numeric variable. The result is 1 if either or
both numbers are non-zero, while the result is 0 if both of the
numbers are zero.

ORL number number intvar

Comments
ORL cannot be used with floating point numbers.

The command form “ORLNON1 N2” is equivalent to the operator form
“N2=N0I IN1”,

See also

ANDL.

OUTPORT

B D e B e e e e e

Writes data to the specified I/O port.
OUTPORT port character

Examples

integer char=65 Writes a byte to the port with address

outport 0x318 char 0x3F8 from the integer variable
CHAR.

Comments

Port identifies the port address (in decimal or hex format); the value
is freated as unsigned.

IMPORTANT: OUTPORT SHOULD ONLY BE USED IF
YOU'RE EXPERIENCED WITH MANIPULATING THE
HARDWARE SIGNALS AND PORTS ON YOUR SYSTEM.
IMPROPER USE OF THE OUTPORT COMMAND COULD
DAMAGE YOUR HARDWARE!

s 131

ASPECT SCRIPT LANGUAGE REFERENCE

See also
INPORT.

PARMREST
m

Restores the PROCOMM PLUS settings found in PCPLUS.PRM.
PARMREST

See also
PARMSAVE, SET and FETCH.

PARMSAVE
m

Saves the current PROCOMM PLUS settings to PCPLUS.PRM.

PARMSAVE

See also
PARMREST, SET and FETCH.

PAUSE
e e e T sy

Halts script-file execution for the specified number of seconds.
Characters received during a pause are not displayed until after the
pause has completed.

PAUSE integer

- A positive integer value indicating
wteger the number of seconds to pause
execution.

Examples

transmit "Kermit send file.ext”
pause 3
kermit receive

Begins a transfer and provides a
pause to allow the remote system to
start.

132 w

Script Reference

Comments

Enlike the MSPAUSE command, PAUSE can be aborted with the
ey.

This command can be tested with the IF SUCCESS and IF FAILURE
statements; FAILURE is set if PAUSE was terminated by the user
pressing the key.

See also
SUSPEND UNTIL and MSPAUSE.

PRINTER

Controls print logging. PROCOMM PLUS writes the log to the DOS
print device specified in Setup General Options.

PRINTER ONI|OQOFF

ON Begins logging the session to the
printer.

OFF Ends logging the session to the
printer,

Example

printer on Begins printing, executes other

clear commands and then ends printing.

printer off
Comments

You can use the DOS MODE command to redirect printer output;
alternately, change the name of your print device in Setup (or with
the SET PRTNAME statement).

Instead of using this command, note that you can save time by
using the LOG command and printing the data later.

See also
LOG and SET PRTNAME,

= 133

ASPECT SCRIPT LANGUAGE REFERENCE

PROC

Marks the beginning of a procedure block.

PROC name
name A unique name or ”IEJIA[N” (ex:ery
ASPECT program begins execution at a
procedure called “MAIN"),
Example
proc main Declares the:: procedure MAIN,
clear manually dials a number, executes
_— o . other commands and closes the
mdial "345-6789" "WEEKLY proc edur.

endproc
Comments

Each procedure must be given a unique name, and every ASPECT
script must have a procedure called “MAIN” (which indicates the
starting point of script execution).

Most ASPECT commands occur within the body of a
procedure—exceptions include DEFINE, UNDEF, INCLUDE, INTEGER,
i LONG, FLOAT, and STRING.

Any procedure except MAIN may declare a parameter list; the
parameters are variables of any type, and are local to the
procedure. The parameters are initialized with values passed via
the CALL which invoked the procedure.

See also

CALL, INTPARM, STRPARM, LONGPARM, RETURN, SETJMP, LONGJMP,
FLOATPARM and ENDPROC.

134 »

Script Reference

PUSHBACK

Moves the last character read from the receive data buffer back to
the beginning of the buffer; in other words, the last character read
from the buffer becomes the next character read from the buffer.

PUSHBACK

Comments

PUSHBACK can be called multiple times to push back any number of
characters previously read from the buffer.

See also
COMGETC, COMGETCD, COMPUTC and SET RXDATA.

PUTENV

Adds or changes an environment variable definition.
PUTENV string
Example
P Pep P variable to the \PC directory on drive
D.
Comments

Only 1 variable can be added or changed at a time.

The variable is active until the command is called again (at which
time the previous variable definition is purged). Any addition or
change will be lost after you exit PROCOMM PLUS.

The word SET is not required in the string, and the environment
variable is forced uppercase (even if supplied in lowercase).

This command can be tested with the IF SUCCESS and IF FAILURE
statements to determine if the environment modification was
successful.

See also

GETENYV.

m 135

ASPECT SCRIPT LANGUAGE REFERENCE

PUTVATTR

Updates the local screen with a display attribute at the specified
row and column.

PUTVATTIR row column attribute

Example
putvatr 4 20 7 Sets the attribute at row 4, column 20
to 7.
See also
GETVATTR and PUTVCHAR.
PUTVCHAR

Updates the local screen with a character at the specified row and
column.

PUTVCHAR row column character

Example
veh 1 col1 205 Displays the character (decimal 205)
putvehar rowt ¢o at the location specified by the integer
variables ROW1 and COL1.
See also
GETVCHAR and PUTVATTR.
QUIT

136 w

Terminates the executing script file, disconnects, and then exits
PROCOMM PLUS.

QUIT
Example
transmit "disconnecting” Quits PROCOMM PLUS after sending a
quit message and disconnecting.

Script Reference

Comments

Use QuIT only when you wish to terminate both the script and
PROCOMM PLUS. To exit without disconnecting, use the BYE
command.

See also
BYE, CONNECT, EXIT and TERMINAL.

RCA

Interprets the next two received characters as a specific row and
column where the cursor should be moved.

RCA

Comments

The row and column values are based from the value 32; for
example, the values 35 and 40 refer to row 3, column 8 (subtract 32
from the values received).

See also
CURDN, CURLF, CURRT and HOME.

RDWRITE

Empties the Terminal mode Redisplay buffer into the specified file.
RDWRITE filespec
Comments

Data is appended to the end of a file if it already exists.

This command can be tested with the IF SUCCESS statement,
returning “TRUE” if the data was written fo the file.

See also

RDFLUSH and SET REDISPLAY.

ASPECT SCRIPT LANGUAGE REFERENCE

- REDIAL

w

Redials numbers in the dialing queue.

REDIAL [strvar]

stroar A variable in which PROCOMM PLUS
returns the number of the dialing
directory entry with which a
connection has been made.

Comments

If you use REDIAL with a queue, it will attempt to redial beginning
with the first number in the queue.

See also
MDIAL and DIAL.

RENAME

T e e e e e R
Renames an existing file.
RENAME filespec filespec

Example

rename "PC.LOG" "bak.log" Renames _PC.LDG to BAK.LOG in the
current directory.

rename "Ctmp” "Cihwiolg® Renames the file TMP in the root
directory of drive C to OLD in the
HW directory (effectively moving it).

Comments

If no path is supplied, RENAME searches the current directory for
the source file.

Files can be renamed to a different directory on the same drive—a
functional equivalent to moving them from one directory to
another.

The result of a RENAME command can be tested with the IF SUCCESS
or IF FAILURE statements.

See also

DELETE.

138 =

Sctipt Reference

RETURN
B e e e e e e e e e e A

Exits the current procedure and resumes processing at the
statement fo]lowing a CALL command.

RETURN

Comments

A RETURN statement placed in the “MAIN” procedure terminates
the script.

The ENDPROC command includes an implied RETURN,

Any SETJMP commands invoked in the current procedure will no
longer be active upon a RETURN from that procedure,

See also
PROC, ENDPROC, SETJMP, LONG/MP and CALL.

REVON
e i e e e e s e o R e e T

Turns on the reverse attribute for Terminal mode display.

REVON

See also
BLINKCN, BOLDON, ULINEON and NORMON.

REWIND
B e e e T 5 e R P e G T P e

Repositions the file pointer corresponding to the specified index
back to the beginning of the file.

REWIND index
Example
rewind 0 Rewinds the pointer for the file
indexed as 0. All end-of-file and
error flags are cleared.
See also

FSEEK, FOPEN and FCLEAR.

& 139

ASPECT SCRIPT LANGUAGE REFERENCE

e T e S e e e s e e g e G LT 1

Clears the receive data buffer.

RFLUSH
RFLUSH
Comments

Any characters that have been received but not processed or
displayed will be lost when this command is issued. It's generally
used to clear the receive data buffer in preparation for some task.

See also
KFLUSH and RDFLUSH.

RGET

s £ b e e - Y R D e R

Receives and stores text strings sent by a remote system.

RGET strvar [length [integer]]

stroar

length

integer

40 =

The variable where the string is
stored. The carriage return is not
stored as a part of the user’s input.

An integer value ranging from 0 to
80, specifies the maximum number of
characters to receive before
continuing processing. If this
parameter is not included, the
maximum of 80 characters is used.

This integer determines the
maximum number of seconds to wait
for the string to be received from the
remote system before timing out. If
this parameter is not included, the
default of 30 seconds is used.

Script Reference

Example

fransmit "ATS0=1AM" Waits a maximum of 45 seconds to
receive a text string of 8 characters

while not connected
and then tests the outcome.

endwhile
transmit "ENTER PASSWORD:"
rget S8 8 45
if not success
transmit "Goodbye!"
hangup

endif . .
Disconnects if the characters are not

received.

Comments

The RGET command completes when a carriage return is received,
when the specified number of characters are received or when the
specified /default time expires. Execution continues with the next
statement in the script.

This command can be tested with the IF FAILURE command, which
returns “TRUE” when RGET times out.

RGET can be exited with the key (the statement IF FAILURE is
returns “TRUE").

To RGET a result message from a modem, you need to do two
RGETs: one to strip the carriage return sent by the modem before its
message, and one to capture the modem message itself (since RGET
ends as soon as it encounters a carriage return).

See also
GET, COMGETC and COMGETCD.

RMDIR

Removes an existing directory using a specified path.
RMDIR filespec

Comments

If no path is supplied, RMDIR removes a subdirectory in the current
working directory.

The result of a RMDIR command c¢an be tested with the IF SUCCESS or
IF FAILURE statements.

= 141

ASPECT SCRIPT LANGUAGE REFERENCE

Only empty directories can be removed.

See also
CHDIR, MKDIR and GETDIR.

RSTRCMP

Compares the contents of two strings up to the specified length.
RSTRCMP string string [length]

Example

rstremp pass input 30 Compares the first 30 characters of
the two strings PASS and INPUT.

Comments

The strings can contain raw data, displayable or not.

The result of this command can be tested with the IF SUCCESS or IF
FAILURE stafements.

See also
STRCMP.

RUN

Executes any external program from within a PROCOMM PLUS script
file, except for DOS internal commands and batch files.

RUN string [WAIT | NOCLEAR]

Any executable program or
command, (except an internal DOS
command or a batch file) as it would
appear on the DOS command line
(optionally including a DOS path).

WAIT After the program is completed,
PROCOMM PLUS waits for a key press
before returning to the script file.

string

142 m

Script Reference

NOCLEAR Prevents PROCOMM PLUS from saving
and clearing the screen before
executing the command (and
restoring it after execution is

complete).
Examples
run "filesort" Executes a program with the start-up
command FILESORT.
Executes the program and then tests
strin &
g P9 fora successi'l}.’xl completion.
assign prg "filesort"
run prg
if failure
message "filesort returned error”
else
message"filesort executed successfully”
endif
Comments

If the path to the executable command is not specified with it, the
program or the DOS command must be either in the current
directory or in the directory specified in your DOS path.

Arguments can be passed to the external program by separating the
program name and the arguments from each other with spaces.

This command can be tested with the IF SUCCESS statement,
returning “FALSE” if the program could not be executed or exited
with any return code other than 0.

Be sure that you have enough memory to execute the specified
command or program and PROCOMM PLUS at the same time. If you
use the RUN command to execute a program or command that
requires user input, make sure that the user running the script file
is aware of this, since processing will halt until the required input is
provided.

For more information, see “Problems When Running an External
Program” in your USER MANUAL and Chapter 4 of this manual.

See also
METAKEY, DOS and SHELL.

& 143

ASPECT SCRIPT LANGUAGE REFERENCE

SCROLL

144 =

Scrolls an area of the screen up by the specified number of lines.
This is similar to the BIOS scroll function.

SCROLL integer row column row column attribute

integer

row column
row column

Examples
scroll 100024 10 79

scroll240023797

See also
BOX and DSCROLL.

An integer value ranging from 0 to
the number of screen rows which
determines the number of lines to
scroll up within the defined area. If
the value is 0, then the entire scroll
area is blanked.

Defines the scroll area. Since no error
checking is performed, make sure
that the first row and column pair are
less than or equal to the second pair.

Scrolls the area from row 0 column 0
(upper-left corner) to row 24 column
10 (lower-right corner) up 10 lines
and clears the area to a red
background with a white foreground.

Clears the screen above the Status line
to black on a white background.

SENDFILE

Script Reference

Sends (or “uploads”) a file to a remote computer using the

indicated transfer protocol.

SENDFILE protocol filespec

protocol

filespec

Examples

waitfor "Begin your transfer”
sendfile zmodem "FILE.EXT"

string ufile
message "Enter filename:"

get ufile

transmit "RECEIVE"
transmit ufile
transmit "AM"
sendfile kermit ufile

The following protocols do not
require a filespec:

EXTPROTO1

EXTPROTO2

EXTPROTO3

CISB

The following protocols require a
filespec:

KERMIT filespec

XMODEM filespec

ZMODEM filespec

WXMODEM filespec

1KXMODEM filespec

TKXMODEMG filespec

IMODEM filespec

TELINK filespec

MODEMY filespec

ASCI filespec

RASCII filespec

YMODEM filespec

YMODEMG filespec

SEALINK filespec

A valid DOS filename or a variable
containing a valid DOS filename.

Sends a file with ZMODEM.

Prompts user for filename.

Sends the filename and then sends
the file to a Kermit server.

= 145

ASPECT SCRIPT LANGUAGE REFERENCE

Comments

To perform an upload, you must first initiate the receive on the
remote; begin your fransfer only after the remote indicates that it is
ready. All transfers may be tested for successful completion with
the commands IF SUCCESS or IF FAILURE.

Pre-existing files can pose a problem if you're using the ZMODEM
transfer protocol. If a file you're sending already exists and crash
recovery is not enabled, the file will be skipped—however, the IF
SUCCESS statement will still refurn a value of “TRUE”. To avoid
this, enable crash recovery or delete the file on the remote system
before using SENDFILE.

For more information on protocols, see the appendix entitled “File-
Transfer Protocols” in your USER MANUAL.

See also

GETFILE.

SET

Changes system parameters which control various PROCOMM PLUS
and ASPECT operations. SET commands can customize the settings
in the Setup facility and the Line Settings screen for your
applications.

SET parameter value

One or two keywords identifying the
parameter to be changed.

The new setting for this parameter.
Value can be a keyword, integer, long
or string (depending on the
parameter requirements).

parameter

value

For details about the following parameters, please refer to Chapter
8 of your USER MANUAL.
ABORTDL KEEP|DELETE

Determines whether PROCOMM PLUS will KEEP or DELETE
incomplete and aborted downloads. The default is KEEP, and
FETCH returns a 0 for KEEP and a 1 for DELETE.

ALARM OFFI| ON
Sets the alarm sound OFF or ON.

146 =

Script Reference

ANSISBIT OFFI ON

Sets 8-bit ANSI Escape sequences OFF or ON. The default is OFF (7-
bit sequences).

ASCII 8STRIP OFFION

Strips the 8th bit from each character sent or received during an
ASCII file transfer.

ASCIT BLANKEX OFFION

Controls expansion of blank lines during ASCII uploads.

ASCII CHARPACE integer

Sets the character pacing in milliseconds (valid values range from 0
to 999).

ASCII DN_CR CRISTRIPICR_LF

Controls translation of incoming carriage returns during AsC
downloads. FETCH returns a 0 for CR, a 1 for STRIP and a 2 for
CR_LF

ASCII DN_LFLFISTRIPICR_LF

Controls translation of incoming line-feeds during ASCII downloads.
FETCHreturnsa 0 for LF, a 1 for STRIP and a 2 for CR LF.

ASCIT DN_TQO integer

Sets the timeout delay for AsCll downloads; the value can range
from 0 to 30000 seconds between received characters.

ASCIT ECHO OFFION
Controls local echo during ASCII uploads.

ASCII LINEPACE integer

Sets line pacing timing in 1/10 seconds (valid values range from 0
to 99).

ASCII PACECHAR character

Sets the pace character used. Specify this as an ASCII decimal value
(valid values range from 0 to 255).

ASCII TABEX OFFION
Converts the TAB character to eight spaces during AsCIl uploads.

ASCII UP_CR CRISTRIPICR_LF

Controls translation of outgoing carriage-returns in ASCII uploads.
FETCHreturnsa 0 forCR,a 1 for STRIP and a 2 for CR_LF.

ASPECT SCRIPT LANGUAGE REFERENCE

148 =

ASCII UP_LFLFISTRIPICR_LF

Controls translation of outgoing line-feeds in Asc uploads. FETCH
returns a for LF, a 1 for STRIP and a 2 for CR LF.

ASPDEBUG OFFION

Controls whether or not ASPCOMP will display an offset location as
a part of run-time error messages. The default is OFF. When
ASPDEBUG is set to ON, the message “ASPECT file aborted” is
displayed when a script is aborted with the key.

ATIME integer

Sets amount of time alarm sounds (valid values range from 0 to
9999).

BACKSPACE NONDEST | DEST

Controls destructive nature of received backspace characters.
FETCH returns a 0 for NONDEST and a 1 for DEST.

BAUD long

Sets the baud rate. Possible values are 300, 1200, 2400, 4800, 9600,
19200, 38400, 57600 and 115200. The SET BAUD statement is a
synonym for SET BAUDRATE.

BAUDRATE long

Sets the baud rate. Possible values are 300, 1200, 2400, 4800, 9600,
19200, 38400, 57600 and 115200. The SET BAUDRATE statement is a
synonym for SET BAUD.

BLOCKCUR OFFION
Specifies a square block cursor or a line cursor.

BREAK integer

Sets the length (in milliseconds) of a break sent by the BREAK
command (valid values range from 0 to 32767).

CALLOG OFFION

Determines whether PROCOMM PLUS will keep a log of all completed
calls. This command must be set before a connection is made for the
log to be updated correctly.

CDINXFER NOI|YES
Determines whether or not carrier detect will be monitored during
file transfer operations.

CHATMODE CHARACTERI|BLOCK

Specifies BLOCK or CHARACTER fransmission of data in
Terminal mode Chat. FETCH returns a 0 for CHARACTER and a 1
for BLOCK.

Script Reference

CLIPCHAR character
Specifies the Clipboard filename separator character.

CR CRICR_LF

Controls incoming CR translation. FETCH returnsa 0 for CRand a1
for CR_LF.

DATABITS integer
Sets the data bits used; possible values are 7 or 8.

DECIMAL length

Sets the number of digits to the right of the decimal point to print
for floating point numbers. This command affects the floating
point precision used in ATGET, ATSAY, FTOA and all commands that
use a format string (FATSAY, FSTREMT and STREMT). Valid values
range from 0 to 80, and the default is 2. The value doesn’t change if
you chain to another script; however, any precision occurring in a
format string overrides the default precision, and the ATGET
command only uses the default precision when displaying a default
floating point value. The last digit in the displayed value is
rounded (for example, if the default precision is 2, a value of
123.456789 would become 123.46). For more information, see the
descriptions for each of the above commands in this manual.

DIALENTRY integer

Loads the information from the specified Dialing Directory entry
into the “$D_“ family of system variables; possible values range
from 1 to 200.

DISPLAY OFFION

Controls whether characters received from the remote system are
displayed. Use DISPLAY OFF, for example, if you don’t want to see
characters displayed in menu-driven script files. Note that no
characters will be written to an open logfile if DISPLAY is OFF.

DLDIR string

Sets the default download drive and directory; maximum length
for DLDIR is 64 characters.

DLXPROTO1 string

Specifies the program to use as External Download Protocol 1;
maximum length is 15 characters.

DLXPRCTO?2 string

Specifies the program to use as External Download Protocol 2;
maximum length is 15 characters.

x 149

ASPECT SCRIPT LANGUAGE REFERENCE

150 =

DLXPROTOS3 string

Specifies the program to use as External Download Protocol 3;
maximum length is 15 characters.

DROPDTR NOIYES

Specifies whether PROCOMM PLUS will drop DTR when you press
the terminal sequence. This doesn’t affect the SET MODEM
DROPDTR command, which controls how PROCOMM PLUS hangs up
from the Dialing Directory.

DUPLEX FULLIHALF

Sets the duplex mode. FETCH returns a 0 for FULL and a 1 for
HALF.

EDITOR string

Defines a program name to invoke with the terminal
sequence; maximum length for the editor string is 64 characters.

EMULATION rterminagl

Defines the active terminal type, clears the screen and updates the
status line. The FETCH form of this SET command returns a numeric
variable value corresponding to the terminal type. SET EMULATION
is functionally equivalent to the EMULATE command. For the
complete list of terminal values, please refer to the definition for the
FETCH command.

ENQ OFF|ONICISB

Controls response to ENQ (ASCII 5). FETCH returns a 0 for OFF, a 1
for ON and a 2 for CISB.

EXITCDHIGH IGNORE| HANGUP | ASK

Determines the action PROCOMM PLUS takes if Carrier Detect is high
when you exit the program. ASK displays a prompt asking
whether or not to hang up, IGNORE continues without prompting
and HANGUP automatically disconnects without prompting.
FETCH returns a 0 for IGNORE, a 1 for HANGUP and a 2 for ASK.

EXPLODE OFFION
Enables and disables exploding windows.

EXTPROTO1 string ASPECTIPROGRAMIHOOK

Specifies the name and type for External Download Protocol 1;
maximum length for the name is 8 characters. FETCH returns a 0 for
ASPECT, a 1 for PROGRAM and a 2 for HOOK.

Script Reference

EXTPROTO?2 string ASPECTIPROGRAMIHOOK

Specifies the name and type for External Download Protocol 2;
maximum length for the name is 8 characters. FETCH returns a 0 for
ASPECT, a 1 for PROGRAM and a 2 for HOOK.

EXTPROTO3 string ASPECT| PROGRAM |HOOK

Specifies the name and type for External Download Protocol 3;
maximum length for the name is 8 characters. FETCH returns a 0 for
ASPECT, a 1 for PROGRAM and a 2 for HOOK.

FASTKBD OFFI|ON

Sets the keyboard typomatic and repeat rates on enhanced
keyboards between normal and fast mode.

FGETS_CRLF OFFION

Controls the function of the FGETS command. When set OFF, this
command discards the line feed character at the end of a string
retrieved with FGETS. For files opened in binary mode, it also
discards the carriage return before the line feed (and the end-of-file
character if it’s the last string read from the file). The default is ON.

FINDCASE OFF|ON

Sets case-sensitivity OFF or ON for the FIND command. The default
is QFF, and the value doesn’t change if you chain to another script.
For more information, see the FIND command description in this
chapter.

FNLOQOKUP OFFION

Determines whether PROCOMM PLUS will “search” the current
screen for a valid filename when downloading with certain
protocols (such as XMODEM).

HARDFLOW OFFION
Enables and disables RTS/CTS hardware flow control.

HOSTAUTOBAUD OFFION
Sets Host mode Auto baud detect ON or OFF.

HOST CONNECTION MODEM |DIRECT

Selects either the MODEM or DIRECT (wired) connection mode for
Host operations. FETCH returns a 0 for MODEM and a 1 for
DIRECT.

HOSTDLDIR string

Specifies the download directory for Host mode operations;
maximum length for the download path is 64 characters.

w 151

ASPECT SCRIPT LANGUAGE REFERENCE

152 »

HOST GOODBYE RECYCLEIHANGUPI|EXIT

Determines the GOODBYE action taken when exiting Host mode.
FETCH returns a 0 for RECYCLE, a 1 for HANGUP and a 2 for EXIT.

HOST MESSAGE string

Contains the Host Welcome Message (maximum length is 50
characters).

HOST NEWUSERLVL 011

Determines whether new users will be assigned a “0” (limited
privilege level, no file transfer capability) or “1” (normal access) at
logon.

HOST SHELLBOOT OFF|ION

Determines whether a loss of carrier will reboot Host when the
remote user has shelled to DOS.

HOST SYSTYPE CLOSED|OPEN

Sets the Host system between OPEN (allow new users) and
CLOSED (don’t allow new users). FETCH returns a 0 for CLOSED
and a 1 for OPEN.

HOST TIMEOUT integer

Determines the Host Inactivity Timeout value; possible values
range from 0 to 999 minutes.

HOST ULDIR string

Specifies the upload directory for Host mode operations; maximum
length for the upload path is 50 characters.

INSMODE OFFION

Sets insert mode OFF or ON for user-defined terminal emulation.

KERMIT 8QUOTE character

Selects the 8th bit quote character; valid values range from 33 to
126.

KERMIT BLOCKCHECK 11213

Selects the block check type, where 1 is a 1 byte checksum, 2 isa 2
byte checksum and 3 is a 3 byte CRC.

KERMIT CQUOTE character

Sets the Kermit control quote character; valid values range from 32
to 127.

KERMIT EOLCHAR character

Selects the Kermit end-of-line character; valid values range from 0
to 127.

Script Reference

KERMIT FILETYPE TEXT | BINARY

Selects the Kermit transfer file type. FETCH returns a 0 for TEXT
and a 1 for BINARY. '

KERMIT HANDSHAKE character

Selects the Kermit handshake character; valid values range from
zero to 31.

KERMIT PACKSIZE integer

Sets the Kermit maximum packet size; valid values range from 20
to 1024.

KERMIT PADCHAR character
Selects the pad character; valid values range from 0 to 127.

KERMIT PADNUM integer
Sets the number of pad characters; valid values range from 0 to 127.

KERMIT STARTCHAR integer

Specifies the Kermit block start character; valid values range from 0
to 127.

KEYS OFFION

Controls how keystrokes are processed when a script is executed.
When KEYS are OFF (the default), PROCOMM PLUS will check for
keystrokes before each command is executed. If the key is anything
other than the key, it will be processed normally (as a
command or a character sent to the remote system). If the key
is pressed, the user is asked whether or not fo terminate the script.
If KEYS are ON, however, the script is expected to check for and
process each keystroke (the TERMKEY command can be used to
process the command or pass keystrokes to the remote system).
For example, if you press while a script file is being executed
and KEYS are OFF, the window displaying the file-transfer protocols
appears, just as in Terminal mode. If KEYS are ON, however, the
keystroke is held in the keyboard buffer until it's processed
by a script command (such as KEYGET). The value of KEYS doesn't
change if you chain to another script. The SET KEYS command
replaces the SET MENUMODE command used in earlier versions of
PROCOMM PLUS.

LOGHILE string

Specifies the default name for the Log file invoked with the
terminal sequence; maximum length for the Log file is 64
characters.

r 153

ASPECT SCRIPT LANGUAGE REFERENCE

154 w

MODEM AUTOANSOFF string

Contains the modem string to disable auto answer operation;
maximum length for this field is 24 characters.

MODEM AUTOANSON string

Contains the modem string fo enable auto answer operation;
maximum length for this field is 24 characters.

MODEM AUTOBAUD OFFION

Sets auto baud detection ON or OFF.

MODEM CALLPAUSE integer

Sets the amount of seconds PROCOMM PLUS will pause between
calls; valid values range from 0 to 999.

MODEM CDHIGHINIT NOI|YES

Controls whether PROCOMM PLUS will send the modem initialization
string if Carrier Detect is high when you start the program.
MODEM CNCT300 string

Contains the message sent by the modem for a 300 baud
connection; maximum length for this field is 15 characters.
MODEM CNCT1200 string

Contains the message sent by the modem for a 1200 baud
connection; maximum length for this field is 15 characters.
MODEM CNCT2400 string

Contains the message sent by the modem for a 2400 baud
connection; maximum length for this field is 15 characters.
MODEM CNCT4800 string

Contains the message sent by the modem for a 4800 baud
connection; maximum length for this field is 15 characters.
MODEM CNCT9600 string

Contains the message sent by the modem for a 9600 baud
connection; maximum length for this field is 15 characters.

MODEM CNCT19200 string
Contains the message sent by the modem for a 19200 baud

connection; maximum length for this field is 15 characters.
MODEM CNCT38400 string

Contains the message sent by the modem for a 38400 baud
connection; maximum length for this field is 15 characters.

Script Reference

MODEM DIALCMND string

Contains the modem dialing command string; maximum length for
this field is 24 characters.

MODEM DIALSUFFIX string

Contains the modem dialing command suffix string; maximum
length for this field is 24 characters.

MODEM DROPDTR NOIYES

Specifies whether PROCOMM PLUS will drop DTR to hang up.

MODEM HANGUP string

Contains the hangup command string; maximum length for this
field is 24 characters.

MODEM INIT string

Contains the modem initialization string; maximum length for this
field is 46 characters.

MODEM MAXDIAL integer

Specifies the maximum number of redial attempts; valid values
range from 0 to 999.

MODEM NOCNCT1 string

Contains the first message sent by the modem for no connection
connection; maximum length for this field is 15 characters.
MODEM NOCNCT2 string

Contains the second message sent by the modem for no connection
connection; maximum length for this field is 15 characters.
MODEM NOCNCT3 string

Contains the third message sent by the modem for no connection
connection; maximum length for this field is 15 characters.
MODEM NOCNCT4 string

Contains the fourth message sent by the modem for no connection
connection; maximum length for this field is 15 characters.
MODEM SENDCR NOIYES

Specifies whether PROCOMM PLUS will send a carriage refurn to the
modem after hanging up.

MODEM WAITCNCT integer

Determines the maximum amount of seconds PROCOMM PLUS will
wait for a connection during a call; valid values range from 0 to
999,

ASPECT SCRIPT LANGUAGE REFERENCE

156 =

MOUSEX integer

Sets the horizontal mouse sensitivity; sensitivity decreases as the
value increases. Valid values range from 1 to 999.

MOUSEY integer

Sets the vertical mouse sensitivity; sensitivity decreases as the value
increases. Valid values range from 1 to 999.

MSG_CRLF OFFION

Controls the function of the MESSAGE command. When set OFF,
automatic carriage returns and line feeds used in the MESSAGE
command are suppressed. The default is ON.

PARITY NONE | ODD | EVEN I MARK | SPACE

Controls the parity setting for this session. FETCH returns a 0 for
NONE, a 1 for ODD, a 2 for EVEN, a 3 for MARK and a 4 for
SPACE.

PAUSECHAR integer

Identifies the character PROCOMM PLUS translates into a half-second
pause within modem commands, strings sent with the TRANSMIT
command or character strings (like the Host mode welcome
message). The default character is a tilde (~), and valid values
range from 32 to 126.

PORT CcOM11COM21COM3 | COM41COM51COMé1

comzIcoms [base [IRQ]]

Selects the serial port. Optional base and IRQ address parameters
can be included; they’re treated as unsigned values.

PROTECT OFFION

Sets a display field as protected or normal for user-defined
emulations.

PROTOCOL protocol

Selects a default protocol for uploading and downloading; the
value must be a valid protocol name.

PRTNAME string

Defines the device to be used for print operations. A maximum of
4 characters is allowed in the device name.

PULLDNKEY integer

Selects the key to invoke the pull-down menu system; valid values
range from ASClI 32 to 126.

PULLDNMENU OFFION

Sets the pull-down menu system OFF or ON.

Script Reference

RANGECHK OFFION

Sets script value range checking OFF or ON. If ON, an out-of-range
value will issue an error message during execution, allowing the
user to end the script (if the script is not aborted, the value may
cause unpredictable results). A setting of OFF forces PROCOMM
PLUS to ignore the out-of-range value and continue. The default is
ON, and the value doesn’t change if you chain to another script.

REDISPLAY integer

Controls the size of the Terminal mode Redisplay buffer (in
kilobytes). Legal values range from 1 to 63.

RELAXED OFFION

When set to ON, this parameter increases the amount of time
PROCOMM PLUS will wait for a block before timing out during a file
transfer.

REMOTECMD OFFION

Determines whether PROCOMM PLUS will accept script commands
sent by a remote PC.

RXDATA OFFION

Specifies whether PROCOMM PLUS or a script will process characters
received at the active com port. The default, OFF, indicates that
PROCOMM PLUS will process received characters; if RXDATA is ON,
your script must handle incoming data (with commands like
COMGETC and TERMWRT). If RXDATA is set ON, any active WHEN
statements will only be checked when COMGETC or COMGETCD are
called.

SCREEN 25X80| EXTRAX801 USERMODE | EXTRAXUSER

Toggles the current video mode (unlike VIDSTART, which sets the
startup mode); functionally, it’s similar fo the Terminal
mode sequence, FETCHreturnsa 1 for 25X80, a 2 for EXTRAXS80,a 3
for USERMODE and a 4 for EXTRAXUSER.

SCROLL OFFION

Determines scroll setting. If ON, characters or messages on the last
row and column of the screen will scroll; if OFF, this field forces
PROCOMM PLUS to overwrite characters on the last row with new

data.

SNAPSHOT siring

Specifies the default filename for the Screen Snapshot (invoked
with the Terminal mode sequence); maximum length for
this field is 64 characters.

ASPECT SCRIPT LANGUAGE REFERENCE

158 =

SNOW OFFION

Removes interference (or “snow”) on older CGA monitors during
direct screen write operations.

SOFTFLOW OFFION
Enables or disables XON/OFF (or “software”) flow control.

SOQUND OFFION
Controls sound effects.

STATLINE OFFION

Turns the status line at the bottom of the Terminal mode screen ON
or OFF. When STATLINE is OFF, PROCOMM PLUS can use the entire
screen for terminal display.

STOPBITS 112
Sets the stop bits used for the current session.

SWITCHCASE OFFION

Sets case-sensitivity OFF or ON when the SWITCH command is
using string values. The default is OFF, and the value doesn’t
change if you chain to another script. For more information, see the
SWITCH command description in this chapter.

TERMBOLD attribute

Selects the color used to display high-intensity characters in
Terminal mode.

TERMDIM integer

Selects the color used to display low-intensity characters in
Terminal mode.

TERMNORM integer

Selects the color used to display normal characters in Terminal
mode.

TERMREYV integer

Selects the color used to display reverse characters in Terminal
mode.

TERMULINE integer

Selects the color used to display underlined characters in Terminal
mode.

TERMWIDTH 801132

Controls whether PROCOMM PLUS will use an 80-column screen or a
132-column screen (regardless of the actual columns your hardware

Script Reference

can display). For more information, see “Terminal Options” in
Chapter 8 of your USER MANUAL.

TRANSLATE OFF| ON | STRIP

Controls the use of the translate table. The STRIP option allows the
removal of the 8th bit from all incoming data. FETCH returns a 0 for
OFF, a 1 for ON and a 2 for STRIP.

TXPACE integer

Determines character pacing in milliseconds for all outgoing
character strings.

ULINEFONT OFFION

When set ON, this parameter enables “true” underlining for

EGA /VGA color monitors.

ULXPROTO1 string

Specifies the program to use as External Upload Protocol 1;
maximum length for this field is 15 characters.

ULXPROTO2 string

Specifies the program to use as External Upload Protocol 2;
maximum length for this field is 15 characters.

ULXPROTO3 string

Specifies the program to use as External Upload Protocol 3;
maximum length for this field is 15 characters.

USERVID integer

Sets the value sent to your graphics adaptor to select the “USER
MODE" video mode. Values range from 0 to 255. For more
information on video modes, see “Display/Sound Options” in
Chapter 8 of your USER MANUAL.

VGALINES 28143150

Specifies the number of extra lines PROCOMM PLUS will display on
EGA and VGA monitors; note that EGA supports only 43 lines.

VIDSTART DOSMODE|25X801 EXTRAX80| USERMODE | EXTRAXUSER

Sets the video mode PROCOMM PLUS will use each time you start the
program. FETCH returns a 0 for DOSMODE, a 1 for 25X80, a 2 for
EXTRAX80, a 3 for USERMODE and a 4 for EXTRAXUSER. For
more information, see “Display/Sound Options” in Chapter 8 of
your USER MANUAL.

VIEWUTIL string

Defines a program name to invoke with the Terminal mode
sequence; maximum length for this field is 64 characters.

= 159

ASPECT SCRIPT LANGUAGE REFERENCE

160 =

WAITCASE OFFION

Sets case-sensitivity OFF or ON for the WAITFOR command. The
default is OFF, and the value doesn’t change if you chain to another
script. For more information, see the WAITFOR command
description in this manual.

WHENCASE QOFFION

Sets case-sensitivity OFF or ON for the WHEN command. The
default is OFF, and the value doesn’t change if you chain to another
script, For more information, see the WHEN command description
in this manual.

WRAP OFFION
Controls line wrap in Terminal mode.

WRITEPROT OFFION

Sets a display field as write-protected or normal for user-defined
emulafion.

XFERKEY REGICTRL

Selects the keys to use to initiate a file transfer. REG uses the
default keys (PgUp) and (Pgbn), while CTRL uses and
.

ZMODEM AUTODLOAD OFFION

Enables and disables ZMODEM auto downloading,

ZMODEM ERRDETECT CRC32ICRC16

Selects ZMODEM 16-bit or 32-bit CRC error detection. FETCH returns
a0 for CRC32 and a 1 for CRC16.

ZMODEM RECVCRASH PROTECTINEGOTIATE|ONIOVERWRITE

Determines ZMODEM crash recovery action for received files. FETCH
returns a 0 for PROTECT, a 1 for NEGOTIATE, a2 forON and a 3
for OVERWRITE.

ZMODEM SENDCRASH PROTECTINEGOTIATE| ONIOVERWRITE
Determines ZMODEM crash recovery action for files being sent.
FETCH returns a 0 for PROTECT, a 1 for NEGOTIATE, a 2 for ON
and a 3 for OVERWRITE.

ZMODEM TIMESTAMP OFFION

Sets ZMODEM time/date stamping ON or OFF.

ZMODEM TXMETHOD STREAMING |2KWINDOWI14KWINDOW

Selects ZMODEM window /streaming transmission method. FETCH
returns a 0 for STREAMING, a 2 for 2KWINDOW and a 4 for
4AKWINDOW.

Script Reference

Comments

Values shown as “character” should use the ASCI decimal value of
the desired character. For example, to use XON (ascCII 17) as the
KERMIT handshake character, issue the command SET KERMIT
HANDSHAKE 17.

See also
FETCH.

SETFATTR

Sets a file's attributes.
SETFATTIR filespec string

Example

Sets the file PASS.DAT with the

tiattr "pass.dat” "hr"
seTialr pass ' attributes Hidden and Read-Only.

Comments

Atiributes can include “R” (Read-Only), “H” (Hidden), “S”
(System) and “A” (Archive).

This command can be tested with the IF SUCCESS and IF FAILURE
statements.

See also
GETFATTR.

SETFDATE

T e o e e o P R s)
Sets a file’s date stamp.
SETFDATE filespec string

Example

- - " Sets the date stamp for the file
tidate "A1.DAT" "01/01/91
pol ALDAT at 01/01/91.

x 161

ASPECT SCRIPT LANGUAGE REFERENCE

Comments

This command can be tested with the IF SUCCESS and IF FAILURE
statements.

See also
GETFDATE and SETFTIME.

SETFTIME
e T e P e e T T

Sets a file's time stamp.
SETFTIME (filespec string

Example

setftime "DAN.TXT" "00:33" Sets the creation time for the file
DAN.TXT at 00:33 (military time).

Comments

SETFTIME only sets the hour and minute of a file’s time stamp.

This command can be tested with the IF SUCCESS and IF FAILURE
statements.

See also

SETFDATE and GETFTIME.

SETJMP
M

Marks a location within a script that you can immediately “jump”
to with the LONGJMP command.

SETJMP index intvar

index One of three integer index values (0,1
or 2); the value identifies the location
to the LONGJMP command.

infoar An integer variable initialized to 0 at

execution. This variable will contain
a new value when the LONGIMP is
executed, allowing further processing
(dependent on the script’s execution
at the point of the SETJMP).

162 =

Script Reference

Example
setjmp 0 test Creates a SETJMP location at the 1F
if test command. The location is referenced
switch test by the index number 0, and the
case 1 integer variable TEST will receive the
clear value passed by the corresponding
endcase LONGJMP command.
default
exit
endcase
endswitch
endif
Comments

The marked location is the command following the SETIMP. Up to
three SETJMP locations can be active at once.

The marked location remains active until a RETURN from the
function where it was set—or until another routine uses a SETJMP
with the same index.

See also |

LONGJMP.

SHELL

Suspends PROCOMM PLUS and drops to the DOS command prompt.
You may run any program that can be normally run from DOS at
this time. To return to PROCOMM PLUS, type exit at the DOS
command line.

SHELL

Comments

IMPORTANT: Use caution while in SHELL mode! Programs
using the COM port may be hazardous to the communications
link,

Any program or DOS command you run from SHELL must be either
in the current directory or in the directory specified in your DOS
path. Also, if you're using a hard disk system, COMMAND.COM must
be in the directory from which you started your computer
(typically the root directory of drive C). If you're using a floppy-
disk system, COMMAND.COM must be on the disk in drive A.

ASPECT SCRIPT LANGUAGE REFERENCE

Be sure that you have enough memory to run any SHELL command
or program and PROCOMM PLUS at the same time.

SHELL performs the same function as the DOS Gateway Terminal
mode command.

See also
METAKEY, DOS and RUN.

SHL

ﬁ

This command performs a left shift operation on the bits of one
number and places the result in the specified numeric variable. The
number of shifts performed is designated by the second number.
For each shift performed, each bit in the number is shifted one bit
position to the left. The most significant bit is discarded, and a 0 is
stored in the least significant bit position. The result of each
individual shift operation is the same as multiplying the number by
fwo.

SHL number number numvar

Comments

This command cannot be used with floating point numbers. The
command form “SHL N0 N1N2” is equivalent to the operator form
“N2=N0<<N1".

See also

AND, XOR, COMP and SHR.

Itd m

Script Reference

SHR

This command performs a right shift operation on the bits of one
number and places the result in the specified numeric variable. The
number of shifts performed is designated by the second number.
For each shift performed, each bit in the number is shifted one bit
position to the right. The least significant bit is discarded, and a 0 is
stored in the most significant bit position. The result of each
individual shift operation is the same as dividing the number by
two.

SHR number number numovar

Comments

This command cannot be used with floating point numbers. The
command form “SHR NONIN2” is equivalent to the operator form
"N2=N0>>N1".

See also
AND, XOR, COMP and SHL.,

SNAPSHOT

Copies the contents of the current screen to the disk file PCPLUSSCR
(or the filename specified as the default for screen snapshot files;
see “File/Path Options” in Chapter 8 of your USERMANUAL. If the
file exists, it appends the new screen to the existing file. If the file
does not exist, it opens the file and then writes the information.

SNAPSHOT
Example
snapshot Copies the screen contents to the
PCPLUS.SCR file.
See also

LOG and PRINTER.

ASPECT SCRIPT LANGUAGE REFERENCE

SOUND

Produces a sound of the specified frequency and duration.

SOUND integer integer
Frequency of the sound in Hertz. The

integer frequency can range from 21 to 32767
Hz.

; Length of time for sound, in

integer hundredths of a second. Duration
can range from 0 to 32767.

Example

sound 440 500 Sounds an “A” note for 5 seconds.

STATMSG

166 =

Displays a message centered on the Status line.
STATMSG siring

string A string of up fo 80 characters.
Example

siring umsg Displays the message “Enter
statmsg "Enter password" password” and restores the Status
get umsg 8 line.

statrest

Comments

The message remains onscreen until another command clears or
resets it. If the Status line is SET ON, any PROCOMM PLUS function
key will also erase the message; if the Status line is SET OFF, the
message will be erased only when it's overwritten by incoming
data, scrolls off of the screen or is cleared with another command
(like CLEAR or ATSAY).

See also

ERRORMSG and USERMSG.

Script Reference

STATREST

Updates and redisplays the Status line (if the Status line is currently
SET ON). The command has no effect if the Status line is SET OFF.

STATREST

See also
SET STATLINE and STATMSG.

STRCAT

Concatenates one string variable or quoted string to another string
variable.

STRCAT strvar string [length]

stroar The variable to which the second
string is concatenated. The result
string must be less than or equal 80
characters in length.

The variable concatenated to strovar.

string
An optional integer specifying the
length maximum length to be copied from
the second string.
Example
string front="STR" Adds the string variable BACK to the
string back="CAT" end of FRONT. The value of FRONT

streat front back is now “STRCAT".

See also

STRUPTDT and STREMT.

STRCMP

Compares two strings and sets IF SUCCESS to “TRUE" if the strings
are identical.

STRCMP string string [length]

ASPECT SCRIPT LANGUAGE REFERENCE

length An optional integer specifying the
maximum number of characters to be
compared.

Comments

STRCMP is case-sensifive.

See also
FIND, RSTRCMP, STRUPR and STRLWR.

STRCPY

Assigns a string variable or quoted string to another string variable.
STRCPY strvar string [length)

The second string can be either a

tri

String string variable or a quoted string and
is the string to be copied.

length An optional integer specifying the
maximum number of characters to
copy from the second string,

Examples

strepy Iname “Henry M.” 5 Assigns the value HENRY to the
variable LNAME.

Comments

The command word ASSIGN is a synonym for STRCPY.

Strings can also be assigned to each other with the assignment

operator “=" (for example, S0=53).

See also

STRFMT, SUBSTR, STRUPDT and ASSIGN.

168 =

Script Reference
STRFMT
m

Creates a formatted string using a template and modifies it with
string or nuneric variables. This is similar to “sprintf” in the C
programming language.

STRFMT strvar formatstr [param)...[param]

stroar Variable where the formatted string is
stored,
formatstr For a complete description of the

valid format specifiers, please refer to
the definition for FATSAY in this
chapter,

Comments

Values are taken sequentially (left-to-right) from the first parameter
listed to the last for format types found in the formatstr. The
maximum number of parameters is 10.

Example

init N1 29 Prints “I'm 29 years old”.

strimt S2 "I'm %d years old" N1
message S2

See also
FATSAY and FSTRFMT.

STRING

Defines a global or local string variable.

STRING namel=string][, namel=stringl]...

[=string] An initializer expression; it can be a
§ quoted string or a previously-
declared string variable.
Examples
string name = “jody” Defines the string variable NAME

and initializes it to “jody”.

ASPECT SCRIPT LANGUAGE REFERENCE

Comments

For more information on using global and local variables, please
refer to the definition for FLOAT.

See also

STRPARM, LONG, FLOAT AND INTEGER.

STRLEN

Returns the length of a string or string variable’s contents into an

integer variable.

STRLEN string intvar

Example

string bbs
strlen bbs len

STRLWR

Returns the length of the string
variable BBS into the integer variable
LEN.

Converts the contents of a string variable to all lowercase

characters.

STRLWR sirvar

Example

string name
striwr name

See also
STRUTR.

170 =

Converts the contents of the string
variable NAME {o all lowercase.

Script Reference

STRPARM

Defines a string parameter variable.

STRPARM wnamel, namel...[,name]

Example

strparm bbsname Defines the string parameter
BBSNAME.

Comments

Any procedure—except MAIN—can be defined with up to 10
parameter varigbles. Parameter variables are similar to local
variables in that they may only be referenced within the procedure
in which they’re defined; unlike local variables, though, the value
of lfarameters are automatically initialized when the procedure is
called

For more information on using parameter variables, please refer to
the definition for FLOATPARM.

See also

STRING, INTPARM, FLOATPARM and LONGPARM.

STRPEEK

Returns the ASCII value of a single character within a string.
STRPEEK string strindex intvar

Example

integer char Returns the value of the byte at

string origin position 7 in the string variable

strpeek origin 7 char ORIGIN into the integer variable
CHAR.

Comments

The character position is zero-based from the beginning of the
string (the first position in the string variable is position 0).

See also

SUBSTR and STRPOKE.

® 171

ASPECT SCRIPT LANGUAGE REFERENCE

STRPOKE

Sets the ASCIH value of a single character within a string,.
STRPOKE strvar strindex character

Example

integer newchar=65 Sets the value of the character at

string origin,text position 7 in the string variable

strpoke taxt,‘.v' newchar ORIGIN with the value of the integer
variable NEWCHAR.

Comments

The character position is zero-based from the beginning of the
string (the first position in the string variable is position 0).

See also
STRPEEK and STRUPDT.

STRSET

Initializes the contents of a string variable up to the designated
length.

STRSET strvar character length

Example
i Initializes the value of the string
::::3 ::2: 32 40 variable NAME with the value 32 for
a length of 40 bytes.
STRUPDT

Overwrites a string with another string beginning at a specified
index.

STRUPDT strvar string strindex length

172 »

Script Reference

Example

string output, newdata Sets the values starting at position 3

strupdt output ndata 3 10 in the string vanab_le OUTPUT with
the value of the string variable
NDATA. A total of 10 characters will
be overwritten.

Comments

This command is similar in function to STRPOKE (except that the
characters replaced are taken from a string instead of an integer).

See also

STRPOKE and SUBSTR.

STRUPR

Converts the contents of a string variable to all uppercase
characters.

STRUPR strovar

Example

string name Converts the contents of the string
strupr name variable NAME to all uppercase.
See also

STRLWR.

SUB

Subtracts the second number from the first and then stores the
resulf in the last numeric variable.

SUB number number numovar

Comments

It is possible to subtract one number from another number and
have the result beyond the range of numeric variables; PROCOMM
PLUS does no error checking on this value,

The command form “SUBN1N2N3” is equivalent to the operator form
“N3=NI1-N2".

m 173

ASPECT SCRIPT LANGUAGE REFERENCE

See also

DEC and DIV.

SUBSTR

174 =

Copies the indicated number of characters from a string, beginning

at a specified position.

SUBSTR strvar string strindex length

stroar
string

strindex

length

Examples

string phone
string data
substr phone data17

assign s1 "PROCOMM™
substrsZs133

See also

The resultant string.

The source for the substring
extraction.

The character position in the source
string that starts the resultant string.
The position is counted from zero; for
example, in the string “Tom” the
character T is position 0 and the
character o is position 1.

This is the number of characters in
the source siring that will be
extracted. If the length is greater than
the remaining length of the source
string, SUBSTR will copy the remaining
characters from the source string.

Takes a substring from DATA
starting at position 1 for 7 characters
in length, and stores it in PHONE.

Takes a substring from 51 starting at
position 3 for 3 characters in length,
and stores it in 52. Since we begin
counting positions at 0, 52 would
now be the string “COM”. '

STRPEEK, STRUPDT, STRCPY and FIND.

Scrivt Reference

SUSPEND UNTIL

Waits until the given time to continue execution.

SUSPEND UNTIL integer integer

; ; The first integer (the hour) is in 24
snteger tnteger hour format, with a range of 0 to 23.
The second integer (the minute) has a

range of 0 to 59,
Example
SUSPEND UNTIL 13 30 Waits until 1:30 PM to continue.
Comments

SUSPEND UNTIL can be exited with the key (IF FAILURE is set
“TRUE”). All other keys are ignored.

See also

WAITQUIET, PAUSE and WAITFOR.

SWITCH

Provides multiple decision points by comparing a string or integer
to one or more values. SWITCH requires the use of CASE, ENDCASE
and ENDSWITCH commands; the use of the DEFAULT command is
optional.

SWITCH string | integer
CASE string | integer

ENDCASE
[DEFAULT

ENDCASE]
ENDSWITCH

The source item to be compared to
the string or integer following each
CASE statement.

string| integer

a 175

ASPECT SCRIPT LANGUAGE REFERENCE

CASE string|linteger Compares the variable following the
SWITCH command to the “target” of
the CASE command. If matched,
processing continues with each
command on subsequent lines until
the ENDCASE command is
encountered. If a match is not found,
the processing of subsequent CASE or
DEFAULT commands continues. Items
in the CASE statement must match the
data types used in the SWITCH
statement (for example, you can't
compare a string to an integer).

ENDCASE Concludes processing of commands
following CASE and DEFAULT
commands and passes control to the
command on the line following the
ENDSWITCH command.

An optional parameter, which

DEFAULT handlljes casegwhere no match is
found in any preceding CASE. This
command causes unconditional
processing of each command on the
lines following until the ENDCASE
command is encountered. Processing
then passes to the command on the
line following the ENDSWITCH
command.

176 =

Script Reference

Examples

get_choice:
message "Enter your choice”
get S5 Gets choice A, Bor C.
switch S5 Branches to a subroutine based on the
case "A" choice.
gosub choicea
endcase
case "B"
gosub choiceb
endcase
case SNULL
gosub null_case
endcase
default
message "Invalid selection”
pause 3
goto get_choice
endcase
endswitch

Comments

When a match occurs between the source item and the value
following a CASE command, command processing continues on the
line following the CASE command until the ENDCASE command is
encountered. Processing then continues with the command on the
line after the ENDSWITCH command, which concludes the entire
phrase.

SWITCH supports multiple CASE commands within a single CASE-
ENDCASE command block; a single command block can be executed
by matching the target item with any one of several CASE
commands. Since the end of a block is always an ENDCASE
command, at least one ENDCASE must occur whenever CASE or
DEFAULT is used.

If a CASE command is matched, the statements following it are
executed until an ENDCASE or EXITSWITCH is encountered. If
another CASE is encountered, it's skipped and execution will fall
through to the next set of commands following that CASE
command. The ENDCASE command is an implied EXITSWITCH; once
an ENDCASE is encountered, the only commands that can follow it
are another CASE, a DEFAULT or an ENDSWITCH.

SWITCH command blocks can be nested if required.

The DEFAULT command is optional, but there must be only one
occurrence of it within a SWITCH command block, If a DEFAULT

ASPECT SCRIPT LANGUAGE REFERENCE

isn’t used (and none of the CASE commands were matched), no
action takes place at all.

CASE and DEFAULT statements can occur in any order, but if a match
is made with more than one CASE command, only the statements
following the first matched CASE command will be executed.

If you're using strings with SWITCH, you can control the case-
sensitivity of a match with the SET SWITCHCASE statement.

You can use the SWITCH command phrase to allow a user to make a
choice, and then perform different tasks depending upon the
option selected. A menu system can be created using the SWITCH
command phrase together with the BOX, ATSAY and ATGET
commands.

See also

CASE, DEFAULT, ENDCASE, SET SWITCHCASE, ENDSWITCH and
EXTTSWITCH.

TERMINAL

178 »

Exits the script file and returns to Terminal mode (without
disconnecting).

TERMINAL

Comments

The commands EXIT and CONNECT are synonyms for TERMINAL; all
three perform the same function.

See also

BYE, CONNECT, EXIT and QUIT.

Script Reference

TERMKEY

Processes the keycode value represented by an integer and
performs the corresponding program function.

TERMKEY integer

Example

Calls the Dialing Directory (0x2000 is
termkey 0x2000 g Ty
ermeey the keycode for (aitHD).
Comments

Typically, TERMKEY is used with the SET KEYS ON statement to
“intercept” keystrokes. If the keycode value corresponds to a
program function (such as the Dialing Directory), that function will
be performed. If the value corresponds to a “special” key (for
instance, the function keys (F1) through), PROCOMM PLUS sends
the Keyboard Map codes for the current emulation for that key. If
the value is a standard key (like a letter of the alphabet), the
keycode will be sent to the remote unchanged.

TERMKEY treats the keycode value as unsigned.
See also

HITKEY, SET KEYS, KEYGET and KEY2ASCIL.

ASPECT SCRIPT LANGUAGE REFERENCE

TERMRESET

Resets the terminal mode display. The screen is cleared, the cursor
is moved to row 0, col 0 and the emulation is re-initialized.

TERMRESET

TERMWRT

Displays the ASCII character corresponding to the keycode value at
the current cursor position and moves the cursor to the next
available location.

TERMWRT integer

Example

integer char=65 Displays the character contained in

termwrt char the integer CHAR (“A”) at the current
cursor position. The cursor is moved
to the next available position.

Comments

The keycode value is treated as unsigned, and range checking is
suppressed for this command. Unlike WRITEC, no conversion is
done on the value.

See also
WRITEC, KEYGET, HITKEY, SET KEYS and MESSAGE.

TIME

Places the current time into a string variable.

TIME strvar 011

011 0 = Regular AM/PM format—
HH:MM:S55AM or HH:MM:SSPM

1 = 24-hour military format—
HH:MM:SS

180 =

Script Reference

Example
string current Gets the system time and places it in
time current 1 string variable CURRENT in 24-hour
military format.
See also
$TIMEQ, $TIME1 and DATE.
TRANSMIT

M

Sends a character string to the remote system or to the modem.

TRANSMIT string

May contain non-printing characters

strin .
g using standard translation

conventions (see “Translating Control
Codes” in the USER MANUAL appendix
titled “Technical Information”).

Examples

transmit "ATDT1 314 875-0503*M"

pause 10
Transmits dial command and phone
number to modem number and then
pauses 10 seconds.

string id Tests for connection; performs

it conn addtional processing if connected.
Receives user id from local user.

. Send to remote system ...

endif with a carriage return.

message "Enter your |D"

getid

transmit id

transmit "AM"

transmit "Dave said *"Hello™"

Sends “Dave said "Hello" to the
remote system. If you want to send a
quotation mark (") within the
character string, you must precede it
with the single back quote character
(). This back tic character (ASCIT 96) is

ASPECT SCRIPT LANGUAGE REFERENCE

on the key that has the tilde (~) above
it.

Comments

Note that TRANSMIT does not automatically add a carriage return at
the end of a character string. To send one, use the *M control code
(as illustrated in the example).

TYPE

Displays a file to the local screen with paging support.

TYPE filespec
: A valid filename or path and
filespec filename.
Comments

TYPE should only be used with Asch text files. It's equivalent to the
Terminal mode View File command.

ULINEON

Turns on the underline attribute for Terminal mode display.
ULINEON

See also
REVON, BOLDON, DIMON and NORMON.

UNDEF

Removes the current definition of a previously-DEFINEd macro.

UNDEF name

Examples

UNDEF MYNAME Removes the macro definition for the
name MYNAME.

182 »

Script Reference

Comments

UNDEF is paired with a DEFINE command to create a “region” in a
script where an identifier has a special meaning. UNDEF must also
be used prior to redefining a macro that was previously DEFINEd.

See also

DEFINE and $IFDEF.

USERMSG

Displays a message centered in a box on the local screen.
USERMSG string

string A string of up to 80 characters.

See also

A short bell sound accompanies the message. The message will be
erased when the user presses a key (or, if no action is taken, in two
seconds).

See also

ERRORMSG and STATMSG.

VIDREST

M

Restores the screen with video buffer data from a specified memory
buffer.

VIDREST index

index Specifies the screen memory buffer
containing the data to restore—values
can range from 0 to 2.

Example

vidsave 0 Saves the current contents of the

emulate ansi video buffer into screen memory

vidresto buffer 0, switches to ANSI emulation

and restores the screen from that
same buffer,

ASPECT SCRIPT LANGUAGE REFERENCE

Comments

The video buffer can only be restored once; fo perform multiple
restores, you must first VIDSAVE the data again or perform the
restore from another active buffer index.

See also

VIDSAVE.

VIDSAVE

Saves the current video buffer data to memory.

VIDSAVE index
Specifies the screen memory buffer

index .
for this VIDSAVE—values can range
from 0 to 2.

Example

vidsave 0 nges the current contents of the
video buffer into screen memory
buffer 0.

Comments

Your script can use the IF SUCCESS or IF FAILURE statements to test
whether or not the screen buffer was actually saved.

If VIDSAVE is called with an already-active index, the previous
contents of the video buffer will be lost.

See also

VIDREST.

134 =

Script Reference

WAITFOR

T e T T e e e Al DT

Causes a pause in processing until a target string is received from
the remote system.

WAITFOR string [integer | FOREVER]

string

integer

FOREVER

Examples

waitfor "first name;" 45

A string of text and numeric
characters up to 80 characters in
length. You can also include control
characters in the target. Case-
sensitivity can be specified with the
SET WAITCASE statement.

An integer value, which determines
how many seconds to wait for the
target before timing out and
continuing execution. If no delay nor
FOREVER is specified, the default of 30
seconds will be used.

If this is specified for the delay,
PROCOMM PLUS will wait indefinitely
for the target; it will not time out.

Waits 45 seconds for prompt.
Tests and proceeds based on the

if waitfor
transmit "TOMAM" result.
else
call error
endif
waitfor "AMAJBUSY" Uses control characters; waits for
Carriage Return, Line Feed and
.l‘.l‘Busle .
Comments

An exact match is required, but the match is not case-sensitive
(unless you specify SET WAITCASE ON); for example, “ABC”
matches “AbC”, but not “BCA”. WAITFOR times out and allows
processing to continue if the target string is not received in the
specified time. The statement IFWAITFOR on a line following the
WAITFOR command returns a “TRUE” if the target string was
received; a “FALSE” is returned if a timeout occurred or the

key was pressed.

WAITFOR can be exited with the key.

ASPECT SCRIPT LANGUAGE REFERENCE

See also

WAITQUIET, SET WAITCASE, PAUSE and SUSPEND UNTIL.

WAITQUIET

186 =

Waits up to a specified time until the receive data line has been
inactive for a number of seconds.

WAITQUIET [infeger[integer | FOREVER]]

integer

integer | FOREVER

Example

waitquiet 20 forever

waitquiet

Comments

The amount of time (in seconds) that
the line must be inactive. The default
for this optional field is 15 seconds.

The amount of time (in seconds) that
PROCOMM PLUS will wait to satisfy the
first parameter (FOREVER forces the
script to pause indefinitely until the
line is quiet the required number of
seconds). The default is for this
optional field 30 seconds.

Pauses execution of the script
indefinitely until the receive data line
is inactive for 20 seconds.

If none of the optional parameters are
used, WAITQUIET pauses execution of
the script for up to 30 seconds while
waiting for the receive data line to be
inactive for 15 seconds.

WAITQUIET can be exited with the key.
The IF SUCCESS and IF FAILURE statements allow you to test a

WAITQUIET operation.

See also

WAITFOR, PAUSE and SUSPEND UNTIL.

Script Reference

WHEN

Forces an automatic response or procedure CALL when a particular
target string is encountered.

Once a WHEN command is entered, it remains in effect until either a
CWHEN command is encountered or the script terminates.

WHEN {index string | DISCONNECT} (TRANSMIT string| CALL name)

index The identifying index number for this
WHEN statement. Up to 3 WHEN
commands can be in effect, with
indexes ranging from 0 fo 2.

The string used to trigger the action.
Control characters can be included.

NNE Indicates an action to take if carrier is
bIsco cr lost or not present. DISCONNECT is
automatically cleared as soon as it's
triggered.

. Transmits the characters contained in
TRANSM
SMIT string the response string. Control
characters can be included.

CALL name CALLS the specified procedure, which
cannot require any parameters.

string

Example

when 0 "more?" transmit "YAM"

Sends a “Y” followed by a carriage
return each time the prompt “MORE?”
is received.

Comments
Up to 3 WHEN commands can be active at one time.

The SET WHENCASE command allows you to specify whether the
comparison is case-sensitive.

The trigger string should be null-terminated. Only up to the first 40
characters of the trigger string are recognized.

See also
WAITFOR, TRANSMIT, CALL and SET WHENCASE.

& 187

ASPECT SCRIPT LANGUAGE REFERENCE

WHILE

188 w

Repeats a series of commands until the condition becomes
“FALSE".

WHILE condition

Example

while num < 100

;endwhile
Performs a block of commands WHILE
the integer variable NUM remains
less than 100.

Comments

The valid conditional expressions for WHILE are the same as those
available with the IF command, with the addition of the FOREVER
option. The commands LOOPWHILE and EXITWHILE may also be
used in a WHILE block.

FOREVER creates an infinite loop within a WHILE construct.

LOOPWHILE branches directly to the WHILE conditional test from
anywhere within the command block.

EXITWHILE exits the WHILE loop and branches to the command
following the ENDWHILE command.

See also
EXITWHILE, LOOPWHILE, ENDWHILE and IF.

Script Reference

WRITEC

M

Performs emulation conversion and displays or acts upon the
provided character value. The cursor position is updated where
appropriate.

WRITEC integer

Example

integer char=65

writec char
Converts the integer value in CHAR
based on the present emulation and
displays it at the current cursor
position.

Comments

WRITEC interprets the keycode value represented by the integer
based on the current terminal emulation. If the keycode
corresponds to an emulation function, that function is performed;
otherwise, WRITEC behaves exactly like TERMWRT. It displays the
ASCTI character corresponding to the keycode value and moves the
cursor to the next available position.

The keycode value is treated as unsigned, and range checking is
suppressed.

See also
TERMWRT, KEYGET, HITKEY, SET KEYS, KEY2ASCII and MESSAGE.

XOR

M

This command performs a bitwise comparison of two numbers and
places the result in the specified numeric variable. For each two
bits compared, the resulting variable is assigned the value 1 or 0 in
the same corresponding bit position. A 1is assigned if 1 bitis1and
the other is 0. A zero is assigned if both bits are the same.

XOR number number numovar

Comments

XOR cannot be used with floating point numbers.

ASPECT SCRIPT LANGUAGE REFERENCE

The command form “XOR N0 N1N2” is equivalent to the operator form
“N2=NO~N1".

See also
OR and AND.

ZERO

Compares a number with zero. The integer variable is assigned 1 if
the number is zero, and 0 if the number is non-zero.

ZERO number intvar
Comments
ZERO and NOT function identically.

See also

NOT.

System Variables

190 =

For a general discussion of system variables and their uses, please
refer to the beginning of this chapter.

$COL The current column cursor position.

$DATE The current system date (in the format
mm/dd/yy).

The atiributes of the last file returned by a
FINDFIRST or FINDNEXT command.

The creation date of the last file returned by a
FINDFIRST or FINDNEXT command (in the
format mm/dd/yy).

$FEXT The extension (up to three characters
following the period in a filename) of the last
file returned by a FINDFIRST or FINDNEXT
commangd,

SFILENAME The full filename (including extension) of the
last file returned by a FINDFIRST or FINDNEXT
command.

SENAME The base filename (excluding extension) of
the last file returned by a FINDFIRST or
FINDNEXT command.

$FATTR

$FDATE

$FSIZE

$FTIME

$NULL

SROW
$SCRNCOLS

$SCRNROWS
$TERMBOLD
$TERMDIM
$TERMNORM
$TERMREV
$TERMULINE
$TIMED

$TIME1

Script Reference

The size (in bytes) of the last file returned by a
FINDFIRST or FINDNEXT command.

The creation time for the last file returned by
a FINDFIRST or FINDNEXT command (in the
format HH:MM).

Always a “null” (or empty) character; this
system variable is usually used to test another
string variable for the null condition. An
empty string (“”) acts as a synonym for
$NULL.

The current row cursor position.

The number of rows in your current video
mode.

The number of rows in your current video
mode.

The color used for high-intensity characters in
Terminal mode.

The color used for low-intensity characters in
Terminal mode.

The color used for normal characters in
Terminal mode.

The color used for reverse characters in
Terminal mode.

The color used for underlined characters in
Terminal mode.

The current system time (in the format
HIH:MM:SSAM or HH:MM:SSPM).

The current system time (in 24-hour military
format HH:MM:SS).

The following group of system variables allows you to test a
session or operation for a specific condition. Unless otherwise
indicated, each has two possible values: a 0 (indicating FALSE) and
a 1 (indicating TRUE).

s 191

ASPECT SCRIPT LANGUAGE REFERENCE

COMDATA

CONNECTED

FAILURE

FOREVER

FOUND

FROMDDIR

HITKEY

MONO

SUCCESS

WAITFOR

Returns the current status of available

characters in the receive data buffer. If
RXDATA is set OFF, available characters will be
processed between script commands;
therefore, it's possible that the status of
COMDATA may change from “TRUE” to
“FALSE” by the time your script actually uses
it. The only method to ensure that COMDATA
will remain “TRUE” is fo SET RXDATA ON.
There is no way to guarantee that COMDATA
will remain “FALSE", since data can be
received at any time.

Indicates whether or not the Carrier Detect
(CD) signal is high (indicating that PROCOMM
PLUS is currently connected to another
system). If your modem forces CD high,
CONNECTED will always be “TRUE”.

Indicates if the last testable ASPECT operation
(like writing to a file or creating a directory)
did not complete successfully.

This unique system variable will always
return a value of 1, allowing you to easily
create “infinite” WHILE loops (as in the
statement WHILE FOREVER).

Denotes that a matching filename has been
found by a FINDFIRST or FINDNEXT statement.
Additionally, FOUND can be used to indicate a
match by a FIND statement.

Contains the Dialing Directory entry number
which invoked the currently-executing script;
otherwise, the value is 0.

Contains the keycode of the next available
key; otherwise, the value is 0.

Indicates whether or not the local computer is
using a monochrome monitor.

Indicates if the last testable ASPECT operation
completed successfully.
Denotes whether or not the last WAITFOR

statement received the specified string (and
therefore completed) before timing out.

The following group of system variables allows you to read the
information from a Dialing Directory entry. Any system variable
with the “$D_" convention will contain the corresponding value
from the last directory entry with a successful connection
(otherwise, the contents are undefined). If you access the Dialing

192 »

Script Reference

Directory again, the contents of these variables will be changed. To
access the information from a particular entry, use the SET
DIALENTRY statement before using these variables.

$D_BAUD

$D_DATABIT

$D_DUPLEX

$D_ENTRY

$D_KBDFILE
$D_LDATE

$D_METAKEY

$D_MODE

$D_NAME

$D_NOTE

$D_PARITY

$D_PHONE

$D_PORT

$D_PROTO

$D_PWORD
$D_SCRIPT
$D_STOPBIT

The baud rate for this entry. Valid values are
300, 1200, 2400, 4800, 9600, 19200, 38400,
57600 and 115200. A long value.

The number of data bifs. An integer value.

The duplex setting for this entry (either 0 for
Full or 1 for Half). An integer value.

The entry number (as displayed within the
Dialing Directory). An integer value.

The keyboard file. A string value.

The last call date for this entry. A string
value.

The Meta key file for this entry. A string
value.

The connection type for this entry. An integer
value; 0 indicates a modem connection, while
1 indicates a direct connection.

The name identifying this entry. A string
value.

The *NOT filename for this entry (as used by
the Jot function). A string value.

The parity for this entry (0 for None, 1 for
Odd, 2 for Even, 3 for Mark and 4 for Space).
An integer value.

The phone number for this entry. A sfring
value.

The COM port used by this entry (values
range from 1 t0 8). An integer value.

The protocol used by this entry. Values can
range from 0 to 17 (for a listing of protocol
keywords and their values, refer o the
definition for FETCH in this chapter). An
integer value.

The password for this entry. A string value.

The script name for this entry; a string value.

The stop bit setting (either 1 or 2). An integer
value.

ASPECT SCRIPT LANGUAGE REFERENCE

194 =

$D_TERM

$D_TOTAL

The terminal emulation type used by this
entry. Values can range from 0 to 32 (for a
listing of emulation keywords and their
values, refer to the definition for FETCH in this
chapter). An integer value.

The total number of successful connections
for this entry. An integer value.

The following group of system variables are used with Host mode;
any system variable with the “$H_" convention will provide
information on the last caller who successfully logged on to your

Host system.

$H_BAUD
$H_ELAPSED

$H_LEVEL

$H_NAME
$H_OFFLINE

$H_ONLINE

This long variable contains the baud rate at
which the last user connected to Host.

Total elapsed time of the last user’s session.
This is a string variable.

The user's access level. Possible values are 0,
1, and 2; if the logon was unsuccessful (Host
didn’t allow the user into the system), this
variable is set to -1. An integer value.

The last user’s name (in “firstname lastname”
format). This is a string variable.

The time the last user disconnected (in 24-
hour format). This is a string variable.

The time the last user connected (in 24-hour
format). This is a string variable.

CHAPTER

3
Comgiling ASPECT

OVEIVIEW s ssssssssssssasssssmssssssssrssssessesssssess 1 30
ASPCOMP Technical Nofesccovuvrvnrevrannne cuerersreseasaens 197
The Compiling ProCess....ournnssessssssessssssrsnsssessssssses 197
Using a Symbol Map and Line Referenceouwiviiisns 197
Upgrading Scripts from PROCOMM PLUS 1.Xuuvwessnennes 198
Using CONVERTucvinreseisinsssisnis e sssssssanenas 198

Writing Scripts for EffiCiency e eneressisssesessssns 203

ASPECT SCRIPT LANGUAGE REFERENCE

Overview
e e e T R O s L S o L et el

This chapter discusses the compile process (which we introduced in
Chapter 1) in more detail.

For those users who are “upgrading” scripts from earlier revisions
of PROCOMM PLUS, Chapter 3 will provide a wealth of valuable
information. An example 1.1B source program will be CONVERTed
and compiled—and then we’ll demonstrate changes that you can
make to your upgraded sctipts to make them more efficient, easier
to understand and easier to maintain.

19 =

Compiling ASPECT

ASPCOMP Technical Notes

The Compiling Process

For those interested in the inner workings of ASPCOMP, let’s take a
moment to describe both passes make by the compiler in detail:

e Pass 1—Checking for Errors. The compiler makes a first pass
through your source program, specifically checking for errors
before the compiled code is generated. Pass 1 includes a
thorough check of the source program’s syntax. Errors are
reported as they're discovered, and warning messages may be
displayed concerning potential problems (depending on the /W
option setting). If the number of errors specified by the /E
option are found in pass 1, ASPCOMP will abort the compile
proceids.)(without performing pass 2, where the output file is
created).

e Pass 2—Compiling the Script. If the code is validated by the
first pass, the compiler begins the “tokenizing” process.
Commands words and keywords are converted to tokens, and
specific file offsets are generated for each conditional
statement—these offsets greatly enhance the speed at which
procedure CALLs and label jumps are performed within your
compiled script. For security, constants are converted to shorter
groups of encrypted characters.

e Setting the Exit Code. As ASPCOMP terminates, it generates an
“exit code” that can be tested in a DOS batch file or parent
process. If the script compiled successfully, ASPCOMP refurns a
“0”; if an error occurred during compilation, a “-1” is returned.

Using a Symbol Map and Line Reference

ASPCOMP includes two features that can provide you with valuable
information as you're writing and debugging scripts. As we
mentioned in Chapter 1, the /M option generates a source file
summary, while the L switch (used in conjunction with /M) creates
an additional line reference table; both sets of data are written to
the same file, which carries an extension of “.MAP”. Let’s examine
the output you’ll receive when you specify these options during a
compilation.

Note that a MAP file is only created if the compile completes
successfully!

ASPECT SCRIPT LANGUAGE REFERENCE

The Line Reference Table (invoked by the L switch) consists of two
columns labelled “Line” and “Offset”. Each line of the source
program that generates compiled code carries a corresponding
beginning offset value that ASPECT displays as part of its run-time
error messages (if you SET ASPDEBUG ON)—this allows you to trace

roblems that occur within your compiled script back to the line (or

ines) of source code causing the error. Comment blocks are
ignored.

The Output File Summary (invoked by the /M option) includes
similar information for each procedure, including:

e its size (in bytes).

e its beginning offset.

e the number of labels (with their names).

e the number of parameters (with their names).

e the number of local variables.

e the number of times the procedure was CALLed.

e the number of times it CALLed other procedures (with their
names).

The summary also displays totals for the entire script.

Upgrading Scripts from PROCOMM PLUS 1.x

198 =

Using CONVERT

The CONVERT utility is designed to make the switch from PROCOMM
PLUS 1.x standalone script files to compiled “.ASX” scripts as easy as
possible. CONVERT can modify most of your present ASPECT scripts
with the “basics” required for a successful compile.

If the script you wish to convert is in the current directory, you can
run CONVERT from the DOS prompt:

e Type CONVERT [options] scriptname and press .

The options are:

ic Suppresses the CONVERT header and
comments normally placed in the output file.
/En Determines the maximum errors to allow for

the conversion; if more than » errors are
found by CONVERT, it will abort
automatically. The default is 20 errors.

Compiling ASPECT

T Provides ferse error messages. Specifying this
option will substitfute one-sentence error
messages for the default detailed text (with
probable solutions). If you're familiar with
CONVERT, this option can save time.

As an example of the changes CONVERT will make to your existing
script files, we’ll convert the 1.1B script “HOSTXFER.ASP” and
compile it.

HOSTXFER-ASP automates a session with a remote system running
PROCOMM PLUS Host; it logs on, prompts the user for the names of
files to send and get and logs off. The complete 1.1B script file
looks like this:

K
¥

;* HOSTXFER.ASP (C) 1989 DATASTORM TECHNOLOQGIES, INC.

%
¥

;* YOU'LL NOTE SOME PROMPTS FROM THE HOST ARE SENT TWICE. THIS
;* ENSURES THAT THE TIMING BETWEEN SYSTEMS IS CORRECT.

Wk
T

o

;* STEP 1 - SET USER VARIABLES AND DIAL
ASSIGN S0 "JOHN PUBLIC" ;* INSERT YOUR NAME HERE
ASSIGN 31 "JOHN" ;* AND YOUR PASSWORD HERE
WHEN "-MORE-" "AM"
SET TXPACE 50
IF NOT LINKED
DIAL "1" ;* SET THIS TO THE PROPER DIR ENTRY
ENDIF

%

+ STEP 2-LOGS YOU INTO THE PROCOMM PLUS HOST COMPUTER.
PAUSE 3
GETNAMED:
TRANSMIT "AM"
WAITFOR "NAME:"
IF NOT WAITFOR
GOTO GETNAMED
ENDIF
TRANSMIT S0
TRANSMIT "AM"
PAUSE 1
TRANSMIT "Y"
PAUSE 3
SENDPASS:

ASPECT SCRIPT LANGUAGE REFERENCE

200 =

TRANSMIT S1

TRANSMIT "AM"

WAITFOR "VERIFY:" 5

IF WAITFOR
PAUSE 1 ;* RESENDS YOUR PASSWORD
GOTO SENDPASS ;* IF YOU'RE A NEW USER

ENDIF

TRANSMIT "AM"

»* STEP 3 - PROMPTS FOR THE FILENAME TO UPLOAD
GETNAME1:
BOX 00467 15
ATSAY 13 7 "ENTER THE FILE TO 'UPLOAD’ (SEND TO HOST), OR"
ATSAY 25 7 "HIT JUST <ENTER> TO SKIP THIS STEP:"
ATSAY 337 ">"
ATSAY 3647 "<"
ATGET 34 1560 S2
SWITCH S2

CASE "_NULL"

CLEAR
GOTO GETNAME2

ENDCASE
ENDSWITCH
ISFILE S2
IF FAILURE

SCROLL0223497

ATSAY 2 3 15 "FILE NOT FOUND!"

ALARM 1

PAUSE 1

GOTO GETNAME1
ENDIF
CLEAR

e

;* STEP 4 - PERFORMS THE UPLOAD USING YMQDEM BATCH
PAUSE 1

TRANSMIT "U" ; SELECT UPLOAD FUNCTION
PAUSE 1

TRANSMIT "Y" ; SELECT YMODEM BATCH
WAITFOR "NAME?"

PAUSE 1

TRANSMIT 52 ; SEND FILENAME

TRANSMIT "AM"

PAUSE 1

Compiling ASPECT

TRANSMIT "AM" ; ENTER FOR DESCRIPTION
PAUSE 3

SENDFILE BYMODEM S2 ; SEND THE FILE!

PAUSE 3

;* STEP 5 - PROMPTS FOR THE FILENAME TO DOWNLOAD
]
GETNAME2:
BOX0046715
ATSAY 13 7 "ENTER THE FILE TO 'DOWNLOAD’ (RECEIVE FROM HOST) OR"
ATSAY 257 "HIT JUST <ENTER=> TQ SKIP THIS STEP:"
ATSAY337">"
ATSAY 3647 "<"
ATGET 341560 S2
SWITCH 82
CASE "_NULL"
CLEAR
GOTO TRYAGAIN
ENDCASE
ENDSWITCH
CLEAR

ok
3

;* STEP 6 - TELL HOST TO SEND FILE, ENABLE RECEIVE
TRANSMIT "AM"
PAUSE 1
TRANSMIT "D"
PAUSE 1
TRANSMIT "Y"
PAUSE 1
TRANSMIT $2
TRANSMIT "AM"
WAITFOR "PROCEDURE" 10
IF WAITFOR
GETFILE BYMODEM
PAUSE 3
ELSE
MESSAGE "FILE NOT FOUND!"
ALARM 2
GOTO GETNAME2
ENDIF

* STEP 7 - ASKS WHETHER TO TRANSFER MORE FILES

ok

TRYAGAIN:

ASPECT SCRIPT LANGUAGE REFERENCE

202 =

BOX0023415
ATSAY 137 "TRANSFER MORE FILES? (Y/N)"
ATSAY 13015 "NO"
CURON
LOCATE 130
KEYGET 83
SWITCH 83

CASE"Y"

GOTO GETNAME1

ENDCASE
ENDSWITCH
CLEAR

wk

* STEP 8- LOGS YOU OFF!
ok
BIYA:
TRANSMIT "AM"
WAITFOR "CHOICE?"
IF NOT WAITFOR
GOTO BIYA
ENDIF
TRANSMIT "G"

To convert HOSTXFER.ASP:
e Copy it into the same directory as CONVERT.
e Type CONVERT /C HOSTXFER and press .

Note that we used the /C option. By default, CONVERT adds a
commented “header” to the output source program; since the
identifying information wasn’t required for this example, we
ommitted it with the /C option.

CONVERT will make the following changes to the 1.1B ASPECT script
file:

e The PROCMAIN and ENDPROC statments are added to the
beginning and end of the script, respectively. Remember, every
ASPECT source program must contain a procedure named
MAIN!

e The WHEN statement in Step 1 becomes
WHEN 0 "-MORE-" TRANSMIT "AM"

Since up to 3 WHEN commands can now be active, CONVERT
supplies the index “0”. The TRANSMIT parameter (which was
not required in earlier versions of ASPECT) is also added.

Compiling ASPECT

e The CASE" NULL" conditions used by the SWITCH commands in
Steps 3 and 5 are replaced with CASE $NULL. The new system
variable $NULL can appear anywhere in your script where a
string constant can appear.

o The KEYGET in Step 7 is replaced by the statements
KEYGET AUX_INT_1
KEY2ASCI AUX_INT_1 53

The global integer variable AUX_INT_1 (declared at the top of
the script) holds the value for the key pressed by the user. Since
KEYGET now supports only integer variables, the KEY2ASCTI
command must be used to convert the key’s integer value into
the string variable 53.

Now that CONVERT has performed the basics necessary to compile
HOSTXFER.ASP, it can be used with PROCOMM PLUS—however, since
CONVERT cannot rewrite a script, HOSTXFER.ASP isn’t as efficient,
clear or easily-modified as it could be!

Writing Scripts for Efficiency

There are a number of general rules you can follow o make your
compiled scripts clearer and more efficient:

o Use a Structured Approach. Previous versions of ASPECT
favored programs written to “flow” from beginning to end (a
style usually called “unstructured”). Compiled ASPECT is a
structured, procedure-oriented language.

e Avoid GOTOs. Instead of performing a GOTO, CALL a procedure.
Procedures can contain more than one process; the current
function of such a “multi-purpose” procedure can be
determined through the value of a flag or passed parameter.

e Use Full Variable Names, Although the Sx and Nx predefined
variables still exist (and will still work), a script becomes much
easier to read, understand and maintain if you define your own
names for variables. The predefined variables must be used,
however, if you need to preserve the value of a variable when
chaining to another script with the EXECUTE command.

e Avoid Multiple Exits. Ideally, only a single “exit” point (where
the user ends program execution) should be included withina
script. Multiple exits make a source program harder to read
and can cause errors.

e Use Local Variables, Global variables are indeed easy-to-use,
but they can also create problems. By localizing variables, you
avoid accidental changes to the same variable in other areas of
the program—and the time it takes to track down such bugs!

ASPECT SCRIPT LANGUAGE REFERENCE

204 »

e Use Staggered Code Indentation. Logical indentation in a
program can dramatically increase its clarity, allowing you to
easily note the beginning and ending points for procedures and
conditional blocks. Since ASPCOMP ignores indentation and
comments in your source programs, it's recommended that you
both comment and indent your code heavily.

In the last section, we used CONVERT to upgrade the sample script
HOSTXFER.ASP. Let's take HOSTXFER.ASP one step further:

e First, let’s move each routine into a separate procedure; for our
example, we'll use the LABEL names as the new procedure
names.

¢ To make the source more readable, we'll use lowercase
throughout the script and logically indent each conditional
block.

e As mentioned earlier, the predefined variables S0 and 51 could
have been left intact; for clarity, however, we'll change them to
user-defined string variables.

e The MAIN procedure will now hold a structured loop,
executing the procedures GETNAME1, GETNAME?2,
TRYAGAIN and BIYA.

e The procedure TRYAGAIN will now use an integer parameter
(passed by reference) called “ACTION"; this value is returned
to the MAIN procedure as a decision flag.

QOur rewritten HOSTXFR2.ASP looks like this:

i hostxir2.asp (c) 1990 datastorm technologies, inc.

You'll note that some prompts from the host are sent twice. This
* ensures that the timing between systems is cotrect.

define TRUE 1

define FALSE 0

define NAME "Chip Tawdry”

define PASSWORD "BigB"

proc main
integer action iSelection variable
action = TRUE ;At least once through the loop.

ak
¥

;* INITIALIZATION

=
L]

when 0 "-more-" {ransmit "Am"

Compiling ASPECT

when 1 "any key to" transmit "AM"

set txpace 100

call logtohost ;Call login routine

clear

while {action == TRUE) ;Until user chooses not to
call getnamet ;Call upload routine
call getname2 ;Then call download routine
call tryagain with &action ;Then call confirm

endwhile

call biya ;Call logoff routine.

endproc

;* LOGS YOU INTO THE PROCOMM PLUS HOST COMPUTER,

It
¥

proc logtohost

if not connected ;if CD low

if not fromddir ;And not called by dialer
dial "1" ;dial this entry

endif

endif ;answer logon prompis

pause 1

transmit "Am"

waitfor "name:"

transmit NAME

transmit "2M"

pause 1

transmit "y"

waitfor "password”

transmit PASSWORD

fransmit "AM"

waitfor "verify:" 2

if waitfor
transmit PASSWORD
transmit "AM”

endif

transmit "AM"

endproc

=
L]

;¥ PROMPTS FOR THE FILENAME TO UPLOAD

=
]

proc getname1

siring filewanied ;File desired for download

ASPECT SCRIPT LANGUAGE REFERENCE

206 =

while forever

filewanted =™ ;Clear old value of filewanted
box 0045015
atsay 1 3 7 "Enter the file to UPLOAD (send to host),"
atsay 2 3 7 "or hit just <enter> to skip this step:"
atsay 3187 ">"
atsay 3317 "<"
atget 3 19 15 12 filewanted
if null filewanted ;did we hit just <enter>?
exitwhile ;if we did then get out
endif
Isfile filewanted :check existence of the file
If failure ;If found, then do_send proc
seroll0323477 iis CAlLed, clse retry
curofi
atsay 3 18 15 "File not found!”
alarm 1
pause 1
curon
else
clear
call do_send with filewanted ;send the file
endif
clear

endwhile
clear
endproc

PROMPTS FOR THE FILENAME TO DOWNLOAD

proc getname2

string filewanted
while forever

box 0045015
atsay 1 3 7 "Enter a file to DOWNLOAD (receive from host)"
atsay 2 3 7 "or hit just <enter> to skip this step:"
atsay 3187 "»"
atsay 3317 "<"
atget 3 19 15 12 filewanted
stremp filewanted $null ;If the user inputs a hull string
if failure ;ho download attempted
clear

Compiling ASPECT

call do_recelve with filewanted
clear
else
exitwhile
endif
endwhile
clear
endproc

ok
]

PERFORMS THE UPLOAD USING ZMODEM

wk
H

proc do_send
strparm filewanted

transmit "u"” sselect upload function
pause 1
fransmit "Z" _ ;select Zmodem
pause 1
transmit filewanted ;send filename
transmit "Am"
sendfile zmodem filewanted ;send the file!
endproc

ok
)

:* RECEIVES THE FILE FROM THE HOST

ok
-

proc do_receive

strparm filewanted

transmit "d” :Select download

pause 1

transmit "Z" :Select ZMODEM protocol
pause 1

transmit filewanted ;Tell it the filename

transmit "Am"
waitfor "procedure” 5

if waitfor
getfile zmodem :NO getfile zmodem necessary

else :as long as zmodem auto-download
transmit "AM" ;is enabled!!!

endif

endproc

ASPECT SCRIPT LANGUAGE REFERENCE

208 =

;* ASKS WHETHER TO TRANSFER MORE FILES

proc iryagain
intparm userchoice

integer userkey
box 0023415
atsay 13 7 "transfer more files? (Y/n)"
locate 1 30
atsay 130 15 "no"
curon
keyget userkey ;:Get the keypress
userchoice = FALSE
if userkey ==y’ || userkey ==Y’
userchoice = TRUE
endif
clear
endproc

it
¥

¥ LOGS YOU OFF!

ol
?

proc biya

transmit "Am"

pause 1

transmit "g”
endproc

To the user, the “flow” of HOSTXFR2.ASP remains the same (it now
repeats, however, until the user explicitly chooses to stop). To the
programmer, however, HOSTXFR2.ASP has been greatly improved!
It’s easier to read and understand, the conditional processing it
performs is more efficient—and future modifications will be much

easier to perform.

In the next chapter, “Common ASPECT Questions”, we’ll review
topics often covered by our Technical Support staff.

CHAPTER

4

Common ASPECT
Questions

OVETVIEW weetirreenrmcermresssissiasssssss s s asss bebsbssassanamss sasssansssenes 210
ASPECT Variables... e sessssissssssssssscssssssasnssssss 211
File Input/ OQUtPUL cueuvmrssrsseessessomsensrsessisssssssssnsssasssssssssssseess 213
DISPLaY sovsssnsrnsrersrsarssserssesssssrasrsessen s s s s 214
Connecting to a Remofe SyStem ... 215
Accessing DOS.. s sisssanes 216
Transferring FIlES ... ssssssss s 217
DEDUZGITIZ c1vrsrsserssrsssssesssersesnsrnsmsssissssisnsssassrrssasssssasssssssssssess 217

= 209

ASPECT SCRIPT LANGUAGE REFERENCE

Querview

A full-featured and powerful language like ASPECT often elicits
questions from both novice and professional programmers
alike—perhaps you're looking for a more efficient way to perform a
function, or your script unexpectedly pauses during execution.

If you're experiencing a problem with an ASPECT script, check this
chapter first! The following items have been identified as the most
common questions asked by users calling our Technical Support
staff.

Additionally, we'll also include tips on programming “shortcuts”
that may save you time and keystrokes.

210 »

Common ASPECT Questions

ASPECT Variables

How can I initialize a string variable to a null value?

ASPECT supports the direct assignment of a value to each data

To initialize to null (or empty), use the read-only system variable
“$NULL"”—for example:

ANYVAR = $NULL

Here we have assigned the string variable ANYVAR a null value.

How can I make variables global or local?

To automatically make a variable global, simply declare it outside of
any procedure. Note that globals need not be placed at the top of
the source program (they are, however, easier to locate if you do
declare them at the top).

Local variables are defined from within a procedure. Remember,
local variables only operate within their “home” procedure; don’t
make the mistake of attempting to use a local from another
procedure!
LONG TOTAL = 170133
PROC MAIN

STRING BILLNAME
ENDPROC

In this example, the long variable TOTAL is a global variable
initialized to 170133 (since it occurs outside of the MAIN
procedure) , while we’ve defined BILLNAME as a local string
variable.

How can I change a single character in a string?
The STRPOKE command comes in handy here—try this method:

string="FILEQODO1.TXT" ;hefore

strpoke string 7°2'

string="FILEOOO2.TXT" ;after

Note the use of the character constant ‘2’ in the STRPOKE statement.
Why can’t I compare two strings with the statement “IF stringl ==
string2”?

Strings must be compared with the STRCMP command. The “=="
equality operator can only be used with numeric variables or
constants.

r 211

ASPECT SCRIPT LANGUAGE REFERENCE

212 =

The SUCCESS or FAILURE system variables can be tested to
determine if the strings are identical.

Why is ASPECT returning the wrong value for my integer variable
assignments?

Check your value ranges for numeric variables; chances are that
your values are larger than 32767 or smaller than -32768 (making
them LONG values instead of integer). Declare them as LONG
variables.

Is your value a fractional amouni? ASPECT assumes that any value
containing a decimal be defined as a FLOAT type (and should be
assigned as a float variable fo retain the fractional amount).

How do passed parameters work? Why are the values I pass to a
procedure never modified when I return to the CALLing procedure?

You can instruct ASPECT to pass parameters by reference (any
modifications made to the variable by the CALLed procedure are
permanent) or by value (where the CALL sends only the value of the
variable). To CALL by reference, prefix the variable name in the
CALL statement with an ampersand (“&”).

To illustrate passing parameters by reference, let's use the example
procedure READ SEC:
PROC READ_SEC
INTPARM X
STRING TSTR
TIMETSTRO
SUBSTRTSTR TSTR 6 2
ATOITSTR X
ENDPROC

You'll note that READ_SEC “extracts” the seconds from the 12-
hour format system time and then converts those seconds fo an

integer; the result is placed in an integer parameter named X. If we
CALL READ_SEC with the statement:

INTEGER SEC
CALL READ_SEC WITH &SEC

the variable parameter name &SEC indicates that the value is to be
returned intact from the CALLed procedure.

To pass variable parameters in a CALL without allowing their value
to change, simply omit the ampersand prefix.

Common ASPECT Questions

For more information on passing parameters, please refer to the
definitions for CALL and PROC in Chapter 2 of this manual.

Why can’t I use variables like “$amount” and “amount$”?

The “$” is reserved for ASPECT system variables, and should never
appear in a user-defined variable name. Also, user-defined
variables must begin with an alphabetic character (in either UPPER
or lower case) or an underscore.

Does ASPECT support operations like “IF VAR <5 AND VAR >
6..."?

Yes, ASPECT does support the AND operator; however, the example
would return the error message “UNEXPECTED COMMAND"” in a
script. AND is a bitwise ASPECT command—in the above example,
you would instead use the logical operator “&&”. The example
would correctly read:

IFVAR <5 && VAR > 0...

File Input/OQutput

I've opened a file as Read/Write—why isn’t it working properly?

Although an FOPEN command can access a file in Read /Write
mode, you must perform an FSEEK or REWIND on the file before
switching between read and write operations.

In this example, we both read and write to the same file:

long pointer

proc main
string stuff
fopen 0 "io.dat”" "WT+"
fwrite 0 "1234567890" 10
ftell 0 pointer
fseek 0 pointer 0
fread 0 stuff 10

endproc

Note that this example uses a text file; when using the FSEEK
command, you must seek with an offset of 0 relative to the origin
(or, as we did here, you can seek from the file’s beginning with an
offset from an FTELL command).

Where possible, it's suggested that a file be opened in a single
mode (Read-Only or Write-Only, for example); this can reduce the
risk of errors.

ASPECT SCRIPT LANGUAGE RFEFERENCE

Why does the statement “IF EOF 0” always seem to return FALSE
as I write to a file?

The EOF condition becomes TRUE after the first operation that
attempts to read past the end of a file. It will remain TRUE until an
FSEEK, FCLEAR or REWIND is performed.

I'm working with a fixed-length file with records 80 characters

long. Does ASPECT allow me to directly access each record?

Yes—rather than read each record sequentially, use the FSEEK
command to speed file access!

To illustrate, this example reads record 12 of that file directly:

proc main
define recordlength 80
integer total
long position
record=12
total=recordiength+2 ;add CR/LF
record=record-1 jstartat 0
position=record*total ;position of record
fseek O position 0 ;point past start of file
fread 0 line recordlength read the line
endproc

Note that the first record in this file is considered record 0.

Display
M

214 »

Why does VIDREST work fine once, and then fail?

If a screen has been VIDSAVE, it can only be restored once. If you
need to restore a screen multiple times, simply perform another
VIDSAVE and re-save the screen after each restore. Since you can
VIDSAVE up to three screens, you could also save two additional

“copies” of the same screen and restore them separately.

Common ASPECT Questions

Connecting to a Remote System

My logon script works erratically with Telenet and Tymnet. How
can I fix it?

Large switching networks like Tymnet and Telenet are sometimes
slow when processing your sign-on data. Until you’ve connected
to your destination service (like CompuServe), try slowing your
system down slightly by SETting TXPACE to 100 or higher.
Alternately, you can insert pause characters in your script’s
TRANSMIT statements—the default pause character is a tilde (~).

Why doesn’t this BBS recognize succeeding carriage returns in my
scripts?

It may be necessary to send carriage returns separately instead of
one immediately after another; unless the remote system can buffer
the incoming data, the second carriage return may be “lost”.
Instead of sending the string

TRANSMIT "AMAM"

try sending the string

TRANSMIT "AM"
PAUSE 1
TRANSMIT "AM"

As we mentioned earlier, it's always a good idea to keep the .
processing speed of the remote computer in mind when writing ?
scripts.

What changes do I need to make to logon scripts created with
Record mode?

First, shorten the WAITFOR strings to the final word (or characters)
in each prompt. For example, the statement

WAITFOR "AMAJNAME?*M"

becomes

WAITFOR "NAME?"

Next, check to see if you need to add a PAUSE statement at the top
of your script:

TRANSMIT "~M"
WAITFOR "NAME?"

ASPECT SCRIPT LANGUAGE REFERENCE

In this example, your system may miss the WAITFOR string; to make
sure that PROCOMM PLUS is prepared for incoming data, add a
PAUSE statement:

PAUSE 1
TRANSMIT "AM"
WAITFOR "NAME?"

Finally, make sure that you trim extra statements from the
beginning and end of your script.

Accessing DOS
m

I'm trying to read the return value from DOS using the DOS
command... but ASPECT always returns SUCCESS, even though the
program failed!

When you use the DOS command, ASPECT always tests the return
value of COMMAND.COM, not the DOS program you ran. Unless
PROCOMM PLUS can't locate or use COMMAND.COM (COMMAND.COM
isn't in your current directory, DOS PATH or defined through the
COMSPEC environment variable), a DOS statement will always
return a SUCCESS condition.

If you require a return value, use the RUN command whenever
possible; a RUN statement will return the SUCCESS or FAILURE of
the program, not COMMAND.COM.

I'm running PROCOMM PLUS on a floppy system. Why do I keep
getting errors when I attempt to run a DOS program?

ASPECT must load a second copy of COMMAND.COM to execute an
external program with DOS or SHELL. The value of your
“COMSPEC” environment variable points to the location of
COMMAND.COM (you can type SET and press at the DOS
command prompt to display the value of COMSPEC).

Problems occur on a floppy-based system if you insert a different
disk in your boot drive while PROCOMM PLUS is executing; make
sure that COMMAND.COM is available within the path specified by
COMSPEC.

216 &

Common ASPECT Questions

Transferring Files

Why do my SENDFILE and GETFILE operations abort or titme out?

First, make sure that a file transfer operation works manually (this
may point out a problem with your modem setup, an invalid
filename or a protocol mismatch). If the fransfers work manually,
you may have a timing problem—most file transfer protocols
require fairly close cooperation between the sending and receiving
computers. It's a good idea to “fine-tune” a script performing file
transfers by inserting messages and pauses where necessary.

My files transfer fine, but the WAITFOR immediately following
the transfer is almost always ignored. What’'s going on?

Depending on the processing speed of the remote computer, you
may discover that the final “handshaking” required by some
protocols (for example, YMODEM and ZMODEM) completes earlier on
the remote system. Thus the characters that trigger the WAITFOR
are sent before PROCOMM PLUS is ready for them, and the WAITFOR
is never satisfied.

A good example of this is a BBS that sends out a prompt
immediately after the transfer completes. In this case, a solution
might be to send a character or carriage return to force the BBS to
resend the prompt (or to simply assume that the prompt has been
sent, and proceed anyway).

Debugging

Without a TRACE mode, how can I debug my scripts?

Since all syntax errors will be found by ASPCOMP during
compilation, run-time errors will require debugging. Use the
“/ML" options with ASPCOMP—this will create a symbol map,
along with additional procedure execution and source line
reference information.

Also, make sure you SET ASPDEBUG ON to display the offset error
messages generated by ASPECT during execution.

ASPECT SCRIPT LANGUAGE REFERENCE

218 =

With this information, you should be able to debug scripts
accurately and quickly. Use the offset to locate the source line
where the error occurred. Note that the error offset may refer to a
location between two source offsets—this means that the error

occurred somewhere in the middle of the source line with the lesser
offset.

How can I debug timing and sequence problems?

If a particular section of your script is causing errors, a few well-
placed MESSAGE or FATSAY display statements can help pin down
the problem. Use them to display the current value of a variable,
the name of the current procedure or to indicate the command
currently being executed. Don’t forget to remove these debugging
statements after you’ve solved the problem!

In the next chapter, “Advanced ASPECT Examples”, we'll discuss
advanced ASPECT topics and review examples of Host mode
“external” processing, file manipulation and remote commands.

CHAPTER

o)

Advanced ASPECT
Examgles

Remote Commands and String Manipulation.......cceeeee.. 220
Host Mode External Processing and File I/O......ccoeeneee.. 221

ASPECT SCRIPT LANGUAGE REFERENCE

Querview

Sl SRS S B S S T
In this chapter, we'll present two examples of advanced ASPECT
script programming.

These sample source programs present procedures commonly
found in two popular ASPECT applications—remote commands and
external Host mode processing.

These scripts also use several of the “less-familiar” ASPECT
command words. Although they’re not required in many
situations, these commands can save many lines of code (or
perform specialized functions too complex for other languages).

Please note that:

o these examples are written for the expert ASPECT
programmer—you should be comfortable with writing in
ASPECT before attempting to modify these script procedures.

¢ for your convenience, these examples are available as .ASP files
on the DATASTORM CompuServe Support forum and the
DATASTORM BBS; additionally, some of them may be available
on your distribution diskettes.

Remote Commands and String Manipulation

220 =

First, we present REMOTE.ASP, which demonstrates the usefulness of
remote commands and the power of string manipulation.

Although short, REMOTE.ASP allows a remote computer (also using
PROCOMM PLUS) to compile and load a script file that you’ve written
on your PC! This provides an alternative to sending several remote
commands separately, where each command would require
separate compilation before execution.

The file you send can be in source or compiled form; the name of
the file to send should be substituted in the DEFINE REMFILE
statement.

Note The remote machine must have the Remote Commands Setup
option ON for REMOTE.ASP to work!

; REMOTE.ASP

; COPYRIGHT (C) 1990 DATASTORM TECHNOLOGIES, INC.

define REMFILE "$ASP_TMP" ; filename received by remote
proc main

ASPECT for Experts

string filename, xmitfile,xmitstr
integer extndx
vidsave 0
box 418 1860 14
atsay 5 24 15 "REMOTE SCRIPT EXECUTION FACILITY"
alsay 61914 ™ "
atsay 8 20 15 "Enter the ASPECT filename:"
atget 8 47 112 12 filename
igfile filename
if failure
sound 220 10
atsay 10 20 15 "File not found...”
pause 3
else
find filename "." extndx
substr xmitfile filename exindx 4
strupr xmitfile
strimt xmitfile "%5%s" REMFILE xmitfile
atsay 10 20 15 "Sending script file to remote..."
strimt xmitsir "ADgetfile xmodem *"%s"AM" xmitfile
fransmit xmitstr
atsay 12 20 15 "Pausing for remote compilation...”
pause 5
sendfile xmodem filename
if failure
sound 220 20
atsay 14 20 15 "Error sending file to remote”
pause 3
else
pause 3
atsay 14 20 15 "Sending EXECUTE command sequence..."
sirfmt xmitstr "ADexecute "%s"AM" xmitfile
transmit xmitstr
pause 3
sound 440 20
atsay 16 20 15 "Operation completed - Press any key"
keyget
endif
endif
vidrest 0
endproc

Host Mode External Processing and File I/ O

Next, we present a section of HOST.ASP, which performs external
Host mode processing; note that this is a partial script, and will not
function as presented here! The full version of HOST.ASP (with
complete comments and description) is available through the same
sources listed at the beginning of this chapter. HOST.ASP allows
your Host system to selectively call back a user (to reverse the

= 221

ASPECT SCRIPT LANGUAGE REFERENCE

telephone charges). It also sets up Host with a custom
configuration each time you run it.

define HOSTUSRFILE "C:)\PCPLUS\PCPLUS.USR"
define HOSTDLDIR "CAPCPLUS\HOST_DN\"
define HOSTULDIR "CAPCPLUS\HOST_UPY"
define HOSTCDXFER YES

define HOSTCONTYP MODEM

define HOSTHFLOW OFF

define HOSTMAXDIAL 3

define HOSTNEWUSR 0

define HOSTPORT COM1

define HOSTREMCMD OFF

define HOSTSFLOW OFF

define HOSTSHELCD ON

define HOSTSYSTYP CLOQSED

define HOSTTIMOUT 5

define HOSTUSEDTR YES

define HOSTWELCOM "

define FALSE 0

define TRUE 1

; GLOBAL DATA

string urec,uname,ufirst,ulast,upassword,uaccess,ucomment,uchnumber

integer tempkey
i Function: MAIN
proc Main
call Setup ; Setup port, modem, and variables
while forever
host ; Execute host mode
if not success ; If ESC key or Abort command
exitwhile ; EXIT loop and script
endif
if null $H_NAME ; If no successful login
loopwhile ; loop to restart host
endif

uname = $H_NAME
call ParseUsrRec

if success

; uname = "firsthame lastname™
; Find and parse user record
; If found and parsed:

call CallBackRights ; Does user has callback rights
if success ; I he does:

call WantsCB ; See if he wants callback

if success ; If he does:

call CallBack H Call him back

endif

loopwhile ; Loop to reenter host mode
endif

222 m

ASPECT for Experts

endif

HOSTHANGUP ; If not parsed or no rights, hangup
endwhile

endproc

; Function: Setup
; Purpose: Initialize PROCOMM PLUS 2.0 for use as a BBS

proc Setup
call SetupPort
call SetupVars
call SetupModem
endproc

; Function: SetupPort
; Purpose: Initialize the communications port

proc SetupPort
set port HOSTPORT
setbaud HOSTBAUD
get parity NONE
set databiis 8
set stopbits 1

endproc

; Function: SetupVars
; Purpose: Initialize system variables

proc SetupVars
; Make sure both mutually exclusive
fopen 1 HOSTUSRFILE "nt" ; Try to open user file
if not success ; if unable, abort with message
BOXMSG "Error opening user file.”
exit
endif
fclose 1

set host autobaud HOSTAUTOBD ; Setup HOST variables using their
set host connection HOSTCONTYP ; definitions at the top of file |
set host didir HOSTDLDIR |
set host message HOSTWELCOM
set host newuserlvl HOSTNEWUSR
set host systype HOSTSYSTYP
set host timeout HOSTTIMOUT f
set host uldir HOSTULDIR

set host shellboot HOSTSHELCD

set callog . HOSTCALLOG ; Setup miscellaneous variables using
set cdinxfer HOSTCDXFER ; their definitions at the top

set dropdir HOSTUSEDTR

set hardflow HOSTHFLOW

set modem maxdial HOSTMAXDIAL
set remotecmd HOSTREMCMD

ASPECT SCRIPT LANGUAGE REFERENCE

224 =

set softflow HOSTSFLOW
set host goodbye EXIT ; callback mode
set keys ON
set rxdata ON
set msg_crlf OFF
set switchcase OFF
set kermit blockcheck 3 ; Setup protocols to be good hosts
set kermit filetype BINARY
set kermit packsize 1024
set zmodem errdetect CRC32
set zmodem recvcrash PROTECT
set zmodem sendcrash NEGOTIATE
set zmodem timestamp OFF
set zmodem txmethod STREAMING
endproc

Function: SetupModem

: Purpose: Initialize the modem for use by host mode

proc SetupModem

integer savetxpace

fetch txpace saveixpace

set txpace 150

TX "ATZAM"

mspause 500

TX "ATVIrM-"
mspause 500

TX "ATQOAM-"
mspause 500

TX "ATS7=60~M"
mspause 500

set ixpace savetxpace

endproc

Function: CallBack

: reset fo defaults
; use verbal result codes
: use verbal result codes

; wait 60 seconds for CD

Purpose: Hangup and dial the callback number.

proc CaliBack

string title
if connected

HOSTPUTS "r'n'r'n Hangup now! Be sure your modem is set to answer."

HOSTPUTS ™r'n You will be called back momentarily....r'n‘r'n"

HOSTHANGUP
if connected
return
endif
endif

strfmt title "Calling: %s™ uname

mdial ucbnumber title

endproc

; Dial number in user record

; Function: CallBackRights

ASPECT for Experts

; Purpose: Check .USR comment field for special callBACK string

proc CallBackRights
integer idx
find ucomment "CALLBACK[" idx
if found
idx=idx+8

substr uchnumber ucomment idx 80

find ucbnumber "]" idx
if found
strpoke ucbnumber idx 0
SETSUCCESS
return
endif
endif
SETFAILURE
endproc

; Function: WantsCB

; Search comment for keyword

; Idx -> 1st part of number

; Copy from number to end of line
; Find terminator

3 If found

; Strip the rest of line

; and return success

; Purpose: Ask user if he wants to be called back.

proc WanisCB
string response

HOSTPUTS "r'n't'n Weould you like to be called back at ™

HOSTPUTS ucbnumber
HOSTPUTS "?'r'n”

HOSTPUTS " Your choice (Y=Yes, H=Hangup now, C=cancel)? "

while forever
HOSTGETC &response
if not success
exitwhile
endif
SETFAILURE
switch response
case"Y"
SETSUCCESS
exitwhile
endcase
case "H"
HOSTGOODBYE
exitwhile
ehdcase
case "C"
exitwhile
endcase
endswitch
endwhile
endproc

» Function: _HostGetc

; Loop until we break out

; Get a character

; (If connection lost,

; break with FAILURE set)

; Assume not calling back
; What do you want user?
;Y

+ change assumption

; and break

i
; Say goodbye and hangup
; break

; f'C’ or dropped thru from 'H’
; break

; Purpose: Input a character from the port or local keyboard

= 225

ASPECT SCRIPT LANGUAGE REFERENCE

proc _HostGetc
strparm ¢
integer i=-1

while i == -1
if hitkey
XKEYGET &i
endif
if comdata
comgetc i
endif
if not connected
SETFAILURE
return
endif
endwhile
key2asciiic
SETSUCCESS
ehdproc

; Function: ParseUsrRec

; If a key is pressed
; getthe key

; If data available at port

; get the next character

; If carrier drops
; set error return code
; and return {o caller

; Purpose: Lookup user in .USR file and parse record into globals

proc ParselUsrRec
integer i
string tmp
finduname " " i
strepy ufirst uname i
i++
substr ulast uname i 80
strimt tmp "%8;%s;" ulast ufirst
sirlentmp i
fopen 1 HOSTUSRFILE "ri"
if success
while not EQF 1
fgets 1 urec
sircmp urecimp i

; i = index of blank name separator
; copy first name

; i =index of last name

; exiract last name

; 'tmp’ is what we’re looking for
; i = length of name part

; Try to open user file

; If opened

; Loop until end of file

; Get record

: Scan record for user

§

if success If this is our guy,
COPYSFLD &upassword urec &i FLD_SEP ; Copy password
COPYSFLD &uaccess urec & FLD_SEP ; Copy access level
COPYSFLD &ucomment urec &i FLD_SEP ; Copy comment
SETSUCCESS ; set return code to TRUE
fclose 1 ; close the file
return s exit
endif
endwhile
else
BOXMSG “Error opening user file.”
endif
fclose 1 ; close the file
SETFAILURE
endproc

226 =

AEEendices

Appendix A: PCEDIT Technical Notes .mmmssmssssess Ll
Appendix B: Compiler and Run-Time EITOTSuermsasnssorasrssns 233
Appendix C: Reserved Wordsoceevreereenreesesasnmaseeasassans eees 243
Appendix D: Operators ..cuueemsesssenssesssesnes SPTIn——w.1) |

w 227

APPENDIX

PCEDIT Technical Notes

This appendix summarizes the commands available in PCEDIT, along with
additional technical information. For details about the Setup fields controlling
PCEDIT, see Chapter 8.

PCEDIT NOTES

PCEDIT is a powerful ASCII text editor with both ASPECT and word processing
functions; it handles lines up to 120 characters long, with a maximum of 5000 lines
per file.

Multiple files can be edited at once, and two files can be viewed simulfaneously.
Use Alt—+ (or Alt-=) and Alt— to traverse the list of files being edited. Information
can easily be copied or moved between files. Two separate input modes are
available; one tailored for writing ASPECT files, and one for word processing tasks.

When entering text, the full ASCII character range is supported except for the
following values (which have special interpretations): 0 (null), 8 (backspace), 9 (tab),
10 (linefeed), 13 (carriage return), 27 (escape) and 255.

The command line syntax for PCEDIT is:
PCEDIT [options] filespec(s)

Filespecs may include the ™" and "?" wildcards, and multiple filespecs can be
specified. All option switches are optional. Spaces must be used to separate each
option and/or filespec. PCEDIT supports the following command line option
switches:

/B Force use of black & white {monochrome) screen.
/Ln Go directly to line number n.

[V Start in split screen mode.

/N Suppress logo screen.

/U Use uppercase characters in ASPECT macros.

= 229

230 =

Appendices

PCEDIT KEYS

The following keys control PCEDIT functions:

Enter

Cur Down
Cur Up
PgDn
PgUp

Cur Left
Cur Right
Home
End

Tab
Shift-Tab
Insert

Ese
Backspace
Delete

Ctrl-PgDn
Ctrl-PgUp
Cirl-End
Cirl-Cur Left
Ctrl-Cur Right

Alt-A
Alt-B
Alt-C
Alt-D
Alt-E
Alt-F
Alt-G
Alt-H
Alt-I
Alt-K
Alt-L
Alt-M
Alt-N
Alt-O
Alt-P
Alt-Q
Al-R
Alt-S
AW-T

Next line; cursor at first char; add line if EOF or insert on

Next text line; cursor column unchanged
Previous text line; cursor column unchanged
Display next screen of text

Display previous screen of text

Move cursor left one character

Move cursor right one character

First character in current text line

One character past last character in current line
Traverse to next fab stop

Traverse to previous tab stop

Toggle between insert and overtype modes
Undo changes to current line

Delete character left of cursor; move cursor left
Delete character at current cursor position

Last text line in file

First text line in file

Delete from current cursor postion to end of line
Previous word on text line

Next word on text line

Alter text in file (search and replace)

Block mark

Copy marked block below current line

Delete current line

Erase (delete) marked block

Find first occurrence of search string

Shift text in marked block 1 character left

Shift text in marked block 1 character right

Insert line below current line

Copy marked block and leave block highlighted
Go to specified line number ‘
Move marked block below current line

Find next occurrence of search string in file
Open/redisplay a file for editing

Begin a new paragraph in WP mode

Quit w/o saving and exit (prompt if text changed)

Recover last changed/deleted line above current line

Display Setup options (through PCSETUT)
Expand tabs in file to spaces

Appendix A: PCEDIT Technical Notes
Alt-U Unmark marked block
Alt-V Toggle view mode between full- and split-screen
Alt-W Toggle active split window
Al-X Exit current file to DOS, saving any changes
Alt-Y Clear line marker(s)
Alt-Z Display PCEDIT On-line help
Alt-1 through 5 Set/Goto linemarker 110 5
Alt-+ Display next file in edited file list
Alt— Display previous file in edited file list
Chil-A Alter text in marked block (search and replace)
Ctrl-F Format a paragraph (WF mode only)
Ctrl-H Delete character left of cursor; move cursor left
Ctrl-1 Insert line above current line
Cirl-] Join next line to current line at cursor position
Cirl-K Display On-line Help for ASPECT Keycodes
Ctrl-L Change characters in marked block to lowercase
Ctrl-M Merge file at current line
Ctrd-S Split current line at cursor position
Ctl-U Change characters in marked block to uppercase
Ctrd-V Toggle screen size (lines per screen)
Cirl-W Write (save} current contents of file to disk
Cil-Z Display On-line Help for ASPECT Language
PCEDIT has 40 buili-in macros for use with ASPECT. Press one of the keys below to
automatically insert the indicated words in a script file:
F1 PROC - ENDPROC
EF2 IF - ENDIF
F3 ELSEIF
F4 ELSE
F5 SWITCH - ENDSWITCH
F6 CASE - ENDCASE
F7 DEFAULT - ENDCASE
F8 WHILE - ENDWHILE
9 FOR UPTO - ENDFOR
F10 FOR DOWNTO - ENDFOR
Shift-F1 ATSAY
Shift-F2 FATSAY
Shift-F3 CLEAR
Shift-F4 SCROLL
Shift-F5 BOX
Shift-Fé MESSAGE
Shift-F7 LOCATE

Shift-F8 GETCUR

Appendices

232 =

Shift-F9
Shift-10

Ctrl-F1
Ctrl-F2
Cttl-F3
Ctrl-F4
Ctl-F5
Cul-Fé
Ctrl-F7
Ctrl-F8
Ctl-F9
Cizl-F10

Alt-F1
Alt-F2
Al-F3
Alt-F4
Alt-F5
Alt-Fé
Al-F7
Alt-F8
Alt-F9
Alt-F10

CUROFF
CURON

ATGET
MATGET
RGET
STRCPY
STRFMT
STRCAT
STRCMP?
SUBSTR

PAUSE
WAITQUIET
WAITFOR
WHEN

CWHEN
SUSPEND UNTIL
GETFILE
SENDFILE
TRANSMIT
HANGUP

APPENDIX

Compiler and Run-Time
Errors

This appendix lists both the possible error messages generated by ASPECT during
the execution of a script and the possible warning messages generated by
ASPCOMP during a compiliation.

Errors that occur while a script is executing are separated into two categories: non-
critical and critical errors. Non-critical errors are those with error numbers less than
100; should one of these occur, you'll be prompted whether or not to abort the
currently executing script. If you choose not to abort it, execution will continue,
However, unreliable results may occur.

Critical errors are those with error numbers greater than 100. If one of these errors
occurs, the script will terminate immediately after the error message is displayed.

If you SET ASPDEBUG ON, a file offset will accompany an error message, which
allows you to trace the error to a particular source line when using a symbol map
generated with a source line reference table (use the /ML command line switch with
ASPCOMP to produce the symbol map file).

SCRIPT EXECUTION (RUN-TIME) ERRORS
Error 1: Value out of range

A value was encountered which was not within the valid range of values accepted
for a particular command parameter. For example, a display row value of 25 is out
of range when your video mode is 25 X 80 (row values are zero-based). This error
message is likely to be the one most often encountered, and does indicate a problem
which should probably be corrected. However, range checking can be suppressed
by issuing the SET RANGECHK OFF command.

Error 2: Divide by zero

A DIV or MOD command (or a / or % operator) attempted to divide a value by
zero. ASPECT will make no attempt to perform the operation as this would
immediately terminate PROCOMM PLUS.

s 233

Appendices

234 =

Error 3: String length limit exceeded

An operation which updates or writes to a string variable has attempted to write
data past the end of string’s data area. The maximum length of any string in
ASPECT is 80 characters. This error will usually occur during a STRCAT,
STRUPDT, or STRFMT command.

Error 4: Index refers to unopened file

A file 1/Q operation was attempted on a file which was not currently open. Make
sure that the FOPEN command is used before any file I/O operations. This message
can be suppressed by setting RANGECHK OFF.

Error 101: Insufficient memory

There is not enough memory available to run the script file. This will occur when
attempting to allocate the data space for a script’s global string variables. Try
reducing the number of global string variables required in the script, or free up more
memory by removing unnecessary TSR programs.

Error 102: Invalid ASPECT file name

An invalid file name was specified at the Alt-F5 prompt, or in a Meta Key definition,
or with the EXECUTE command. A valid file name consists of up to eight characters
optionally followed by a .ASP or .ASX extension. If the file name you specify is
valid, but the file does not exist, a "FILE NOT FOUND" message will occur.

Error 103: Unable to compile ASPECT file

Either an error occurred when attempting to run the ASPCOMP compiler, ora
compile-time error was found in the script file. In the latter case, an error file with a
-ERR extension was probably created (which can be viewed from within
PROCOMM PLUS using Alt-A or Ali-V). Otherwise, refer to "Problems When
Running External Programs” in Appendix C of your User Manual.

Error 104: Error opening ASPECT file
The compiled .ASX script file was not found or could not be opened.
Error 105: Stack overflow in procedure call

A procedure call requiring passed parameters or a procedure with local variables
was called when there was insufficient stack space remaining to continue execution
of the script. Usually this occurs if there are procedure calls nested very deeply (as
might result in a recursive call) or procedures with large numbers of local string
variables.

Error 106: Invalid command encountered

A command was encountered which is not recognized among ASPECT’s command
set. This isa serious condition which indicates a corrupted file or an error within the
compiler. First, attempt to recompile the script file and execute it again. If the error
still exists, contact Datastorm’s Technical Support Forum on CompuServe (GO
DATASTORM), or call Technical Support directly.

Appendix B: Compiler and Run-time Errors

Error 107: Unexpected end of file

An attempt to read the next script command from the compiled script failed. See
error 106 for more details.

Error 108: Stack overflow in string format

A string format operation (FATSAY, FSTRFMT, or STRFMT) exceeded the
maximum length allowed for the output of formatted data.

Error 109: Invalid LONGJMP encountered

A LONGJMP command was attempted before the corresponding SETJMP command
was performed, or the corresponding SETJMP was used by another procedure called
from the current procedure,

Error 110: Unable to execute remote command

A remote command was not entirely received or couldn’t be compiled and/or
executed. See the descriptions for errors 103 and 104.

Error 111: Unexpected data type encountered

A data type was not recognized as valid. Contact Datastorm’s Technical Support
Forum on CompuServe (GO DATASTORM), or call Technical Support directly.

COMPILER ERRORS AND WARNING MESSAGES

Compiler error messages are separated into two categories: those which allow
continued compilation (error numbers less than 100), and those which don’t (error
numbers between 100 and 200). In either case, a .ASX file will not be generated. An
error message is always accompanied by a source line number, and (where possible)
the token which caused the error to occur. Most errors should be easily resolved by
checking the description of a command’s syntax.

Warning messages will not prevent the generation of a .ASX file; they inform you of
a potential problem. Warning messages are numbered 200 and greater. The /W
command line switch will suppress or control the types of warning messages issued.

Error 1: Invalid token

A parameter was specified which was not allowed. A parameter may be the wrong
data type, or may not be an acceptable keyword. Check the command’s description
for the correct syntax.

Error 2: Unexpected token
An unnecessary token was specified. Check the command’s syntax.

Error 3: Unexpected command

ASPECT found a command word not required within the current context of the
source code. This can occur with commands that control program flow (ELSE,
ENDIF, CASE, ENDWHILE, etc.) or if a command word appears within a numeric
expression.

Appendices

236 =

Error 4& Undefined label

A label was referenced in a GOTO command, but the label was not defined within
the procedure wherein the GOTO command occurred.

Error 5: Duplicate symbol

A procedure, label, or variable name has been defined more than once. Select
another unique name to correct the problem.

Error 6: Missing token

A token was required where none was found. Consult the description of the
command for further details.

Error 7: Missing ENDSWITCH command

An ENDSWITCH command was expected where none was found.
Error 8: Missing ENDCASE command

An ENDCASE command was expected where none was found.
Error 9: Missing ENDIF command

An ENDIF command was expected where none was found.
Error 10: Missing ENDWHILE command

An ENDWHILE command was expected where none was found.
Error 11: Missing ENDFOR command

An ENDFOR command was expected where none was found.
Error 12: Unexpected colon

A colon character was found where one was not required. Colons are only used to
define labels used in GOTO commands.

Error 13: Undefined procedure

A procedure name was referenced within the script file, but the procedure definition
was never found.

Error 14; Missing ENDPROC command
An ENDPROC command was expected where none was found.
Error 15: Missing procedure MAIN

Every ASPECT program must contain a procedure named MAIN which indicates
the place where execution of the script should begin.

Error 16: Missing PROC command

A PROC command was expected before the command on the indicated source line.
Only certain commands may occur outside the body of a procedure.

Appendix B: Compiler and Run-time Errors

Error 17: Variable 1imit exceeded

An attempt was made to define more variables than are allowed within a source file.
Thereis a limit of 128 global variables of each data type, and 128 parameters and
local variables per each procedure.

Error 18: Variable not defined

A variable name was used, but no variable with that name was previously defined.
A variable must be defined before it is referenced.

FError 19; Variable already defined

An attempt to define a variable was made when the name was already used by
another variable. Local variables must have names that are unique from other
existing global variables.

Error 20: Invalid command or expression token

A token was encountered that was neither a valid ASPECT command, numeric
expression operator, value or variable, nor a string variable.

Error 21: Invalid numeric variable or constant

A token was encountered that was neither a previously defined numeric variable
nor a valid numeric constant of the acceptable data type(s).

Error 22: Invalid numeric variable

A token was encountered which does not represent a previously defined numeric
variable of the acceptable data type(s).

Error 23; Invalid string constanc (quotes missing)

A token presumned to represent a string constant was encountered, but the quotes
surrounding the sfring were missing.

Error 24: Invalid string variable

A token was encountered which does not represent a previously defined string
variable.

Error 25: Invalid identifier

An illegal name (used to define a procedure, label, variable or macro) has been
encountered. Sce "Naming Elements in ASPECT" in Chapter 2 of the ASPECT Script
Language Reference Manual for the correct naming conventions.

Error 26: Label used in another procedure

A label name was encountered which was already being used within another
procedure. Label names within a script file must be unique, even though a label can
only be referenced from within the procedure wherein it is defined.

Appendices

238 =

Error 27; Invalid floating point operation

A floating point value was encountered in an numeric operation which does not
accept floating point values. These operations include bit-wise manipulation,
shifting, and unary complement.

Error 28: Invalid use of reserved word

A procedure, label, variable, or macro name was encountered which is identical to
an ASPECT reserved word and therefore cannot be used. See Appendix C fora
complete list of reserved words.

Error 29: Macro already defined

A macro with the same name was already defined earlier in the script file. To define
a macro name more than once, the previous definition of the macro name must be
removed using the UNDEF command.

Error 30: Missing ENDCOMMENT command

The end of the source file was reached while in a COMMENT block,

Error 31: Missing $ENDIF command

Then end of the source file was reached while within a $IFDEF command block.
Error 32: Missing terminating quote

A terminating quote character is required within a string or character constant.
Error 33: Line truncated during macro expansion

A macro name was encountered in a command line and upon replacing the macro
name with its defined text, the maximum allowable source line length was
exceeded. Split the source line using a backslash character just before the macro
name.

Error 34: Invalid expression token

A token was encountered within a numeric expression that was neither a valid
Operator nor a numeric constant or variable,

Error 35; Missing operator

In a numeric expression, an operator was expected between two operands, or
between an operand and a unary operator.

Error 36: Missing operand

In a numeric expression, an operator was being processed without an available
operand.
Error 37: Missing right paren

In a numeric expression, a right parenthesis was expected to match a corresponding
left parenthesis.

Appendix B: Compiler and Run-time Errors

Error 38: Missing left paren

In a numeric expression, a right parenthesis was encountered without a
corresponding left parenthesis.

Error 39: Missing variable operand
In a numeric expression, a variable operand was expected between two operators.
Error 40: Expression too complex

A numeric expression could not be evaluated due to the large number of nested
operators and operands. Break the expression into several smaller sub-expressions.

Error 41: Missing space between tokens

A space is required between each token on a command line. This error occurs when
a space is missing between a token on either side of a quoted string constant.

Error 42: Unexpected escape sequence
An escape character was encountered outside of a string or character constant.
Error 43: Maximum token length exceeded

A token was encountered which exceeds the maximum allowable token length of 80
characters.

Error 44: Invalid variable operand

In a numeric expression, a variable operand type was required in order to apply a
particular operator (usually =, ++, or —).

Error 45: Invalid pass by reference

A parameter was encountered in a procedure call which is not a defined variable
and therefore cannot be passed by reference. Comnstants may only be passed by
value (no ampersand allowed).

Error 46: Invalid number of parameters

A procedure call has been encountered which does not include the correct number
of parameters as defined by the procedure being called.

Error 47: Missing WITH before parameter list

A procedure call was encountered which includes a parameter list without the
required WITH keyword.

Error 48: Missing comma in token list

A comma is required to separate a list of tokens which are used to define variables
Or parameters.

= 239

Appendices

240 w

Error 49: Mismatched parameter type

A parameter in a procedure call was found to be a different data type than expected
by the procedure being called. Make sure your parameters are the same type and in
the same exact order as those listed in the procediire’s definition.

Error 50: Escape sequence character out of range

An escape sequence evaluated to an invalid character value. Escape sequences can
only represent character values from 0 to 255.

Error 51; Invalid character constant

A character constant represents a character value from 0 to 255, and therefore cannot
consist of less or more than one character. Note that valid escape sequence
evaluates to a single character value even though the sequence may be defined using
more than one character,

Error 101: Stack overflow (nesting too deep)

A command which defines a nested command block (such as IF, WHILE, FOR,
SWITCH, etc.) is nested too deeply to be evaluated by the compiler; or, an
INCLUDE command was nested more than 10 levels deep. The script file or
INCLUDE files must be written differently to avoid the nesting problem.

Error 102: Stack underflow

An internal stack used by the compiler was found to be in an incorrect state. Please
report the problem on DATASTORM's Technical Support Forum on CompuServe
(GO DATASTORM), or call Technical Support directly.

Error 103: Insufficient memeory

There is insufficient memory to compile the script file. First, check that thereis at
least 128K of memory available, and then attempt to compile the script again. If this
fails, the script is too large to be compiled and should probably be split up into
smaller files which can then be executed separately with the EXECUTE command.
Please report the problem on DATASTORM's Technical Support Forum on
CompuServe (GO DATASTORM), or call Technical Support directly.

Error 104: Invalid command line option

A command line option was encountered which is not supported by the compiler.
Run the compiler without any command line arguments to display the available
options.

Error 105: Invalid script file name

The script file name supplied is longer than 8 characters or does not have a .ASP
extension.

Error 106: Error opening script file

The script file name supplied refers to a non-existent file, or a file which cannot be
opened successfully,

Appendix B: Compiler and Run-time Errors

Error 107: Error opening output file

The compiler was unable to open the output file (ASX extension) for code
generation. If the file already exists, make sure that it's not marked read-only.

Error 108: Missing script filespec

The script file name must be provided on the command line along with any options.
The compiler will not prompt for it.

Error 109: Error writing to output file

An error has occurred while generating the oufput file. Make sure that there is
sufficient disk space to create the file. The compiled .ASX output file usually
requires less space than the .ASP source file.

Wamning 201; Unreferenced local label

A label was defined within a procedure, but it was never referenced with a GOTQO
command.

Warning 202: Unreferenced parameter

A procedure defines a parameter which was never used within the procedure’s
command block.

Warning 203: Unreferenced local variable

A procedure defines a local variable which was never used within the procedure’s
command block.

Warning 204: Unreferenced global variable

The script file defined a global variable which was never referenced by the
procedures contained in the generated output file.

Warning 301: Ignoring unreferenced procedure

The script file contains a procedure which was never called by another procedure
within the seript file, or was called only by another procedure which was never
called. The compiler will not generate code for this procedure thus reducing the
output file size and saving disk space.

x 241

APPENDIX

C

Reserved Words

This appendix lists the reserved words set aside in ASPECT for
named elements.

For more information on the restrictions concerning reserved

words and ASPECT named elements, please refer to Chapter 2 of this
manual.

$COL
$DATE
$D_BAUD
$D_DATABIT
$D_DUPLEX
$D_ENTRY
$D_KBDFILE
$D_LDATE
$D_METAKEY
$D_MODE
$D_NAME
$D_NOTE
$D_PARITY
$D_PHONE
$D_PORT
$D_PROTO
$D PWORD
$D SCRIPT
$D_STOPBIT
$D_TERM

$D TOTAL
$ELSE
$ELSEIF
$ENDIF
$FATTR
$FDATE
$FEXT
$FILENAME
$FNAME
$FSIZE
$FTIME

$H BAUD
$H_ELAPSED
$H_LEVEL
$H_NAME
$H_OFFLINE
$H_ONLINE
$IFDEF
$NULL
$ROW
$SCRNCOLS
$SCRNROWS
$TERMBOLD
$TERMDIM
$TERMINORM

$TERMREV
$TERMULINE
$TIMEQ
$TIMET
IKXMODEM
TKXMODEMG
25X80
ZKWINDOW
4KWINDOW
8QUOTE
8STRIP
ABORTDL
ADD

ADDS&0
ADDS90
ADMS3
ADM31
ADMS
ALARM

AND

ANDL

ANSI
ANSISBIT
ASCHI

ASK
ASPDEBUG
ASPECT
ASSIGN
ATGET
ATIME

ATOF

ATOIL

ATOL

ATSAY
ATT4410
ATT605
AUTOANSQOFF
AUTOANSON
AUTOBAUD
AUTODLOAD
BACKSPACE
BAUD
BAUDRATE
BINARY
BLANKEX

BLANKON
BLINKON
BLOCK
BLOCKCHECK
BLOCKCUR
BOLDON

BOX

BREAK

BYE

CALL

 CALLOG

CALLPAUSE
CASE
CDHIGHINIT
CDINXFER
CEIL
CHARACTER
CHARPACE
CHATMODE
CHDIR

CISB

CLEAR
CLIPCHAR
CLOSE
CLOSED
CNCT1200
CNCT19200
CNCT2400
CNCT300
CNCT38400
CNCT4800
CNCT9600
COM1
COoM2
COM3
COM4
COMB
COMs6
coM7
COM8
COMDATA
COMGETC
COMGETCD
COMMENT
COoMP

x 245

Appendices

COMPUTC
CONNECT
CONNECTED
CONNECTION
CQUOTE

CR

CRC16

CRC32

CR_LF

CTRL

CURRT
CURUP
CWHEN
DATABITS
DATE

DEC
DECIMAL
DEFAULT
DEFINE
DELCHAR
DELETE
DELLINE
DEST
DGD100
DGD200
DGD210
DIAL
DIALCMND
DIALENTRY
DIALSUFFIX
DIMON

DIR

DIRECT
DISCONNECT
DISKFREE
DISPLAY
DIV

DLDIR
DLOAD
DLXPROTQO1
DLXPROTO2

246 w

DLXPROTO3
DN_CR
DN_LF
DN_TO

DOS
DOSMODE
DOSVER
DOWNTO
DROPDTR
DSCROLL
DUPLEX
EBOL

EBOS

ECHO
EDITOR
EEOL

EEOS

ELSE

ELSEIF
EMULATE
EMULATION
ENDCASE
ENDCOMMENT
ENDFOR
ENDIF
ENDPROC
ENDSWITCH
ENDWHILE
ENQ

EOLCHAR
EQ
ERRDETECT
ERRORMSG
ESPRIT3
EVEN
EXECUTE

EXITCDHIGH
EXTTFOR
EXITSWITCH
EXITWHILE
EXPLODE
EXTPROTO1
EXTPROTO2

EXTPROTO3
EXTRAXE0
EXTRAXUSER
FATLURE
FASTKBD
FATSAY
FCLEAR
FCLOSE
FETCH
FFLUSH
FGETC
FGETS
FILETYPE

FINDCASE
FINDFIRST
FINDNEXT
FINISH
FLOAT
FLOATPARM
FLOOR
FNLOOKUP
FOPEN

FOREVER
FOUND
FPUTC

FROMDDIR
FSEEK

FTELL
FTOA
FULL
FWRITE
GE

GET
GETCUR
GETDIR
GETENV
GETFATTR
GETFDATE
GETFILE
GETFSIZE

GETFIIME
GETVATTR
GETVCHAR
GOODBYE

HOST
IBM3101
IBM3161
IBM3270
IBMPC

IF
IGNORE
IMODEM
INC
INCLUDE
INIT
INPORT
INSCHAR
INSLINE
INSMODE
INTEGER
INTPARM
ISFILE
ITOA
KEET
KERMIT
KERMSERVE
KEY2ASCI
KEYGET
KEYS
KFLUSH

LINEFEED

LINEPACE
LOCATE
LOG
LOGFILE
LOGOUT
LONG
LONGIMP

LONGPARM

LOOPFOR

LOOPWHILE

LT

LTOA
MARK
MATGET
MAXDIAL
MDIAL
MEMFREE
MEMPEEK
MEMPOKE
MEMREAD

MEMWRITE

MESSAGE
METAKEY
MGET
MKDIR
MLOAD
MOD
MODEM
MODEM7
MONO
MOUSEX
MOUSEY
MSPAUSE
MUL

NO

N1

N2

N3

N4

N5

N6

N7

N8

N9

NEG

Appendix C: Reserved Words

NEGOTIATE
NEQ
NEWUSERLVL
NO
NOCLEAR
NOCNCT1
NOCNCT2
NOCNCT3
NOCNCT4
NONDEST
NONE
NORMON
NOT

NULL

oDD

OFF

ON

OPEN

OR

ORL
OUTPORT
OVERWRITE
PACECHAR
PACKSIZE
PADCHAR
PADNUM
PARITY
PARMREST
PARMSAVE
PAUSE
PAUSECHAR

PROC
PROGRAM
PROTECT
PROTCCOL
PRTNAME
PULLDNKEY
PULLDNMENU
PUSHBACK

PUTVATTR

PUTVCHAR
QuIT

x 247

Appendices

248 m

RANGECHK
RASCI

RCA
RDFLUSH
RDWRITE
RECVCRASH
RECYCLE
REDIAL
REDISPLAY
REG
RELAXED
REMOTECMD
RENAME
RESUME
RETURN
REVON
REWIND
RFLUSH
RGET
RMDIR
RSTRCMP
RUN
RXDATA

Be8erBRBERE
el
2

SCROLL
SEALINK
SENDCR -
SENDCRASH
SENDFILE
SET
SETFATTR
SETFDATE
SETFTIME
SETIMT
SHELL

SHELLBOOT
SHL

SHR
SNAPSHOT
SNOW
SOFTFLOW
S0UND
SPACE
STARTCHAR
STATLINE
STATMSG
STATREST
STOPBITS
STRCAT
STRCMP
STRCPY
STREAMING
STRFMT
STRING
STRIP
STRLEN
STRLWR
STRPARM
STRPEEK
STRPOKE
STRSET
STRUPDT
STRUPR

SUB

SUBSTR
SUCCESS
SUSPEND
SWITCH
SWITCHCASE
SYSTYPE
TABEX
TELINK
TERMBOLD
TERMDIM
TERMINAL
TERMKEY
TERMNORM
TERMRESET
TERMREV
TERMULINE

TERMWRT

TIMEOUT
TIMESTAMP
TRANSLATE
TRANSMIT

TV910
V912
TV920
TV922
TV925
TV950
TV955
TXMETHOD
TXPACE
TYPE
ULDIR
ULINEFONT
ULXPROTO!1
ULXPROTO2
ULXPROTO3
UNDEF
UNTIL
UPTO
UP_CR
UP_LF
ULINEON
USERMODE
USERMSG
USERVID
VGALINES
VIDREST
VIDSAVE
VIDSTART
VIEWUTIL
VT100
VT102
VT220
VT320

VT52

WAIT
WAITCASE

WAITCNCT
WAITFOR
WAITQUIET
WHEN
WHENCASE
WHILE
WITH
WRAP
WRITEC
WRITEPROT
WXMODEM
WYSEI00
WYSES0
WYSE7S
XFERKEY
XMODEM
XOR

YES
YMODEM
YMODEMG
ZERO
ZMODEM

Appendix C: Reserved Words

APPENDIX

OEemtors

This appendix provides technical details concerning the use of operators in ASPECT.

Several operators may be used in mathematical expressions in the ASPECT
programming language. Each operator has a precedence level and associativity, and
most operators have an equivalent command form (except for the parens, compound
assignment operators and comma operator).

Precedence defines order of operator evaluation in the absence of parentheses.
Operators of higher precedence are evaluated before those with lower precedence.
Parentheses are used to override the default precedence. For example, the
expression A + B * C would be evaluated by multiplying B and C together and then
adding A because * has a higher precedence level than +. The expression (A +B)*
C, however, would first evaluate A + B, and then would multiply the result by C.

Associativity determines the order of evaluation when examining two operators with
equal precedence (note: all operators having the same precedence level always have
the same associativity.) Left to right associativity means that an operand is grouped
with the operator on its left, whereas right to left associativity means that an
operand is grouped with the operator on its right. For example, the expression A* B
/ C would be evaluated by multiplying A and B, and then dividing that resultby C.
Operand B groups with * rather than / because * and / are left to right associative.
The expression A = B = C, however, is evaluated by assigning the valueof Cto B
and then to A. B is assigned a value before A because = is right to left associative.

Two special unary operators, ++ and —, may be applied to either side of an operand.
In either case the effect is to increment or decrement the operand. However, when
the operator is applied to the right side of an operand, the value of the operand is
used in the context of the expression before it is incremented or decremented. When
applied to the left side of an operand, the value is used in an expression is the result
after the operand is incremented or decremented. For example, in the expression A
+ B—, A is added to B, and then B is decremented. In the expression A + B, first Bis
decremented, and then it is added to A.

The compound assighment operators can both transform and assign values ina
single step. For example, the expression A += B is equivalent to the expression A =
A+B.

s 251

Appendices

Except for the left and right parens and the unary operators, all operators listed here

are binary and act upon two operands.

ASPECT OPERATOR TABLE

Operator Tvpe Precedence Associativity Command
(GROUP 13 Left to Right -—
) GROUP 13 Left to Right -
! UNARY 12 Right to Left NOT
- UNARY 12 Right to Left NEG
- UNARY 12 Right to Left COMP
++ UNARY 12 Right to Left INC
- UNARY 12 Right to Left DEC
* BINARY 11 Left to Right MUL
/ BINARY 11 Left to Right DIV
% BINARY 1 Left to Right MOD
+ BINARY 10 Left to Right ADD
- BINARY 10 Left to Right SUB
> SHIFT 9 Left to Right SHR
<< SHIFT 9 Left to Right SHL
<= RELATE 8 Left to Right LE
>= RELATE 8 Left to Right GE
< RELATE 8 Left to Right LT
> RELATE 8 Left to Right GT
== RELATE 7 Left to Right EQ
1= RELATE 7 Left to Right NEQ
& BITWISE 6 Left to Right AND
n BITWISE 5 Left to Right XOR
I BITWISE 4 Left to Right OR
&& LOGICAL 3 Left to Right ANDL
I LOGICAL 2 Left to Right ORL
= ASSIGN 1 Right to Left INIT
¥ ASSIGN 1 Right to Left —
= ASSIGN 1 Right to Left —
Fo= ASSIGN 1 Right to Left —
+= ASSIGN 1 Right to Left -—
= ASSIGN 1 Right to Left -—
<<= ASSIGN 1 Right fo Left —
>>= ASSIGN 1 Right to Left —_
&= ASSIGN 1 Right to Left -
= ASSIGN 1 Right to Left -
Az ASSIGN 1 Right to Left —_
, COMMA 0 Left to Right —

252 =

Index

$ symbol 213
$COL system variable 190
$D_BAUD system variable 193
$D_DATABIT system variable 193
$D_DUPLEX system variable 193
$D_ENTRY system variable 193
$D_KBDFILE system variable 193
$D_LDATE system variable 193
$D_METAKEY system variable 193
$D_MODE system variable 193
$D_NAME system variable 193
$D_NOTE system variable 193
$D_PARITY system variable 193
$D_PHONE system variable 193
$D_PORT system variable 193
$D_PROTO system variable 193
$D_PWORD system variable 193
$D_SCRIPT system variable 193
$D_STOPBIT system variable 193
$D_TERM system variable 194
$D_TOTAL system variable 194
$DATE system variable 190
$ELSE script command 63
$ELSEIF script command 64, 66
use with macros 53
$FATTR system variable 190
$FDATE system variable 190
$FEXT system variable 190
$FILENAME system variable 190
$FNAME system variable 190
$FSIZE system variable 191
$FTIME system variable 191
$H_BAUD system variable 194
$H_ELAPSED system variable 194
$H_LEVEL system variable 194

$H_OFFLINE system variable 194
$H_ONLINE system variable 194
$IFDEF script command 106

use with macros 53
$NULL system variable 191,211
$ROW system variable 191
$SCRNROWS system variable 191
$TERMBOLD system variable 191
$TERMDIM system variable 191
$TERMNORM system variable 191
$TERMREYV system variable 191
$TERMULINE system variable 191
$TIMEQ system variable 191
$TIME]1 system variable 191
ASP files 14
ASX files 14
/C converter option 198
/Dx[=text] compiler option 14, 54
/En compiler option 15
/En converter option 198
/MIL] compiler option 15, 197
/T converter option 199
/Wn compiler option 15
\ extension sign 25

(A)

ADD seript command 10, 35
ALARM script command 8, 36
AND script command 10, 36, 213
ANDL script command 10, 37

Arithmetic commands, in script file 10

ASPCOMP
/D option 14
/E option 15
/M option 15, 197

¥ 253

Index

/W option 15

EITOr messages 233

exit code 197

introduction 14

switches 217

technical description 197
ASPECT

reserved words 243
ASPECT Script Executable 14
ASPECT Source Program 14
ASSIGN script command 4, 37, 168
ATGET script command 5, 38
ATOF script command 10, 39
ATOI script command 10, 39
ATOL script command 10, 40
ATSAY script command 5, 41
Attributes 94

convention 30

®

BLANKON script command 12, 41
BLINKON script command 41
BOLDON seript command 12, 42
BOX script command 8, 42
Branching, in script file 3
BREAK script command 7, 43

sending in script file 43
Buffer

clearing input 140

pushing data 135

video 183, 184

writing in script file 78
BYE script command 3, 43

©

CALL script command 3, 44
CASE script command 45
CEIL script command 10, 45
Character

use in script files 98
Character constants 29
Characters

displaying on screen 180

sending to the remote system 181
CHDIR script command 9, 46
CLEAR script command 8, 46
Clearing keystrokes 112

254 =

Closing a file 76
Color attributes 31
Colors, screen colors

resetting, in script file 46
Column

convention 31
COMDATA system vatiable 192
COMGETC script command 5, 47
COMGETCD script command 5, 47
Command parameters, in script file 24
COMMAND.COM file 163
Commands

PCEDIT 229
COMMENT script command 13,48
COMP script command 11, 48
Compiling scripts 14

general efficiency rules 203

remofe commands

script example 220
strings
script example 220

COMPUTC script command 5, 49
Conditional compilation 53
CONNECT script command 7, 49
CONNECTED system variable 192
Connecting to a remote system

common ASPECT questions 215
Conventions 30
Conversion commands, in sctipt file 10
CONVERT

/C option 198

/Enoption 198

/T option 199
Converting strings to lower-case 170
Converting strings to upper-case 173
CURDN script command 12, 49
CURLF script command 13, 50
CUROFF script command 8, 50
CURON script command 8, 50
CURRT script command 13, 50
Cursor

deleting character 55

deleting line 55

internal 189

moving down one line 49

moving to the left 50

moving to the right 50

moving up one line 51

positioning 38

Cursor position in script file 93

Cursor positioning 114

Cursor, turning off, in script file 50
Cursor, furning on, in script file 50
CURUP script command 13, 51
CWHEN script command 3, 51,187, 188

@

Date

setting file date stamp 161
DATE script command 12, 52
Debugging

common ASPECT questions 217
DEC script command 11, 52
Decimal

setting precision 149
Decrementing numeric variable, in script

file 52

DEFAULT script command 52
DEFINE script command 3, 53, 134
DELCHAR script command 13, 55
DELETE script command 9, 54
DELLINE script command 13, 55
DIAL script command 7, 55
DIALENTRY script command 192
Dialing directory

switching in script file 58
Dialing queue 138

Dialing, specified number, in script file 120

DIMON script command 13,56
DIR seript command 9, 57
Directory
changing, in script file 46
creating a directory from a script file
126
reading in a script 93
Directory and File Control commands, in
script file 9
DISKFREE script command 9, 57

Display and sound commands in script file

8

Displaying variable on screen 71
DIV script command 11, 58
Division

dividing numbers 58

returning the modulus 127
DLOAD script command 7
DOS

Index

common ASPECT questions 216
DOS commands

executing in script file 59
DOS script command 59, 216
DQOSVER script command 12, 60
Downloading a file in a script 96
DSCROLL script command 8, 61

®

(Esc) 16
EBOL script command 13, 61
EBOS script command 13, 62
EEOL script command 13, 62
EEOS script command 13, 62
ELSE script command 63
ELSEIF script command 64
EMULATE script command 7, 64
End-of-file 67
ENDCASE script command 65
ENDCOMMENT script command 13, 65
ENDFOR script command 3, 66
ENDIF script command 3, 66
ENDPROC script command 4, 66
ENDSWITCH script command 67
ENDWHILE script command 4, 67
Environment variable

SET PCPLUS 58,113
Environment variables

control in a script file 135

loading in a script file 94
EOF script command 5, 67, 214
EQ script command 11, 68
Error messages

ASPCOMP 233

run-time 233
ERRORMSG script command 68
Errors

displaying in script file 68
Escape sequences 28
Examples 34
EXECUTE script command 69
EXIT script command 70
EXITFOR script command 71
EXITSWITCH script command 71
EXITWHILE script command 71,188

®

Index

FAILURE system variable 192
FATSAY script command 5, 71
FCLEAR script command 6, 75
FCLOSE script command 6, 76
FETCH script command 7, 76
FFLUSH script command 6, 78
FGETC script command 6, 78
FGETS script command 6, 79
File

atiributes 161

checking existence 110

common ASPECT questions 213

date 95,161
opening in script file 85
time 162
writing to a file 91
writing to output file 87
FleI/O
script example 221
File logging
in script file 115
File pointer
repositioning in script file 88

returning current position in script file

a0
File size 97
Files

displaying list in script file 57

Filespec
convention 32
FIND script command 4, 79

FINDFIRST script command 9, 81

Finding files in script file 81,82

FINDNEXT script command 9, 82

Float
convention 32
converting to string 90
global and local variables 83
parameter variable 84
precision 149

FLOAT script command 83, 134

FLOATPARM script command 84

Floatvar

convention 32
FLOOR script command 11, 85
FOPEN script command 6, 85
FOR script command 3, 86
FOREVER option 188, 192
Format string

256 =

data types 74

definition 72

precision 74
FOUND system variable 192
FPUTC script command 6
FPUTS script command 6, 87
FREAD script command 6, 88
FROMDDIR system variable 192
FSEEK script command 6, 88, 213, 214
FSTRFMT script command 6, 89
FTELL script command 6, 90
FTOA script command 10, 90
FWRITE script command 6, 91

©

GE script command 11,91
GET script command 6, 92
GETCUR script command 8, 93
GETDIR script command 9, 93
GETENYV script command 12,94
GETFATTR script command 9, 94
GETFDATE script command 9, 95
GETFILE script command 7, 96, 217
GETFSIZE script command 9,97
GETFTIME script command 9, 98
Gets system date, in script file 52
GETVATIR script command 8, 98
GETVCHAR script command 8, 98
Global variable 28

float 83

integer 109

long 116

string 169
Global variables 211
GOSUB script command 3, 99
GOTO script command 3, 99

Greater than or equal relational testing 91

Greater than relational testing 11, 100

=

HANGUP script command 7, 101
Help facility in script file 7, 101
HITKEY system variable 192
HOME script command 13, 101
HOOK script command 12,102
Host

external processing

script example 221
HOST script command 7, 102, 194

@

IF EOF statement 214
IF script command 3, 103
INC script command 11,106
INCLUDE script command 13, 106, 134
Incrementing, in script file 106
Index

convention 32
INIT script command 11, 107
INPORT script command 6, 108
Input/QOutput, in script file 5
INSCHAR script command 13, 108
INSLINE script command 13, 108
Integer

convention 32

converting to string 110

global and local variables 109

Parameter variable 109
INTEGER script command 108, 134
INTPARM script command 109
Intvar

convention 32
ISFILE script command 9, 110
ITOA script command 10, 110

@

Jump

using SETJMP and LONGJMP 116, 162
KERMSERVE script command 7, 111
KEY2ASCII script command 10, 111
Keyboard map

loading in a script 113
KEYGET script command 6, 112
Keystrokes

processing in a script 179
KFLUSH script command 6, 112
KLOAD script command 7

@

Length

convention 32
Less than or equal relational testing 113
Less than relational testing 118

Index

Line Reference Table 198
Line Settings
changing 146
LINEFEED script command 13, 114
Local variable 28, 211
LOCATE script command 9, 114
LOG script command 8
Long
convention 33
converting to string 119
global and local variables 116
Parameter variable 117
LONG script command 116, 134
LONG]JMP script command 3
LONGPARM script command 117
LONGVAR
convention 33
LOOPFCR script command 118
LOOPWHILE script command 118, 188
Lowercase conversion 170
LTOA script command 10, 119

™

Macros
creating with the DEFINE command 53
defining during compilation with /D
34
redefining 54
redefining with the UNDEF command
183
using $IFDEF and $ELSEIF 53
Manual dial 120
MATGET script command 6, 119
Math commands, in script file 10
MDIAL script command 8,120
MEMFREE script command 12,121
Memory 143
measuring free RAM 121
reading a specific address 121, 122
setting a specific address 122,123
Memory manipulation commands, in script
file 12
MEMPEEK script command 121
MEMPOKE script command 122
MEMREAD script command 122
MEMWRITE script command 123
Merging ASPECT source files in script files
106

& 257

Index

Message

displaying in script file 166, 183
MESSAGE sctipt command 6, 123
Meta keys

loading, in script file 126
Meta keys in script files 35
METAKEY script command 8, 124
MGET script command 6, 125
MKDIR script command 9, 126
MLOAD script command 8, 126
MOD script command 11, 127
MONO system variable 192
MSPAUSE script command 4, 127
MUL sctipt command 11,128
Multiplying numbers 128

Name
convention 33
Named elements 24
conventions 24
NEG script command 11, 128
NEQ script command 11, 129
NORMON script command 13, 129
NOT script command 11, 129
NULL script command 130
Numeric string
converting to float variable 39
converting to integer 39
converting to long variable 40
Numeric variable
initializing, in script file 107, 212
predefined 26
Numvar
convention 33
Nx
convention 33

©

Qffset
convention 33

Operands
definition 26

Operators

definition 26

technical details 251
OR script command 11, 130

258 m

ORL script command 11,131
OQUTPORT script command 6, 131
Qutput File Summary 198

B

Parameter variable

float 84

integer 109

long 117

string 171
Parameters

restoring from PCPLUS.PRM 132

saving to PCPLUS.PRM 132
PARMREST script command 8, 132
PARMSAVE script command 8, 132
Passing parameters 212
PAUSE script command 4, 132
Pausing

waiting for inactivity 186
Pausing a seript file 132, 175, 185
Pausing execution 127
PCEDIT commands 229
PCPLUS.PRM

restoring 132

saving 132
PCPLUS.SCR file 165
PEEK 121,171
POKE 122,172
Port

conventon 33
Ports

reading data in script file 108

writing data in script file 131
Precision

in format strings 74

setting decimal 149
PRINTER script command 8, 133
PROC script command 4, 134
Procedures 134
Program

running external programs in a script

142

Program control, in script file 3
Protocol

convenfion 33
PUSHBACK script command 7,135
PUTENY script command 12,135
PUTVATTR script command 9, 136

PUTVCHAR script command 9,136

(9]

QUIT script command 4, 136
Quotation mark, in script-file command 27

®

RCA script command 13, 137
RDFLUSH script command 7
RDWRITE script command 7, 137
Reading character from input file in script
file 78
Reading keystrokes 111,112
Reading string from input file in script file
79

Receive data buffer

clearing 140
REDIAL script command 8, 138
Remote commands 34

script example 220
Removing directories 141
RENAME script command 10, 138
Repositioning a file pointer 83
Reserved words 243
RETURN script conunand 139
REVON script command 13, 139
REWIND script command 7,139, 213
RFLUSH script command 7, 140
RGET script command 7, 140
RMDIR script command 10, 141
Row

convention 33
RSTRCMP script command 4, 142
RUN script command 12,142, 216

®

Screen
changing attributes 136
clearing, in script file 46
color attributes 30
common ASPECT questions 214
displaying characters 136
displaying text 123
displaying variables or strings 41
restoring video buffer 183
saving video buffer 184

Index

scrolling 61
scrolling, in script file 144
snapshots in script file 165
typing a file 182
Screen attributes
use in script files 98
Screen colors
resetting, in script file 46
Script command see also individual
command listings
Script file
activating Help facility 101
addition 35
assigning strings 37, 168
attributes 94
branching 3, 44, 99,139
buffer
pushing data back into the buffer
135
changing directory in 46
changing line settings 146
changing Setup specifications 146
checking existence of file 110
clearing file EOF and error flags 75
clearing keyboard buffer 112
clearing previous WHEN command 51
clearing receive data buffer 140
clearing screen in 46
closing a file 76
comparing string contents 142
concatenating strings in 167
conditional compilation 63, 64, 66, 106
conditional processing 45, 52, 63-67, 71,
79, 86,103, 118, 167,172, 175, 187,
188
conversion commands 10
converting floats to strings 90
converting integers to strings 110
converting longs to strings 119
converting numeric strings to float
variables 39
converting numeric strings to integers
39
converting numeric strings to long
variables 40
creating a directory 126
creating formatted string in 169
current directory 93
cursor position 93

Index

* date and fime commands 12
decrementing numeric variable in 52
defining float global and local variables

83
defining float parameters 84
defining integer global and local
variables 109
defining integer parameters 109
defining long global and local variables
116
defining long parameters 117
defining macros 53
defining string global and local
variables 169
defining string parameters 171
deleting a file 54
determining DOS version &0
dialing in 55
dialing specified number, in script file
120
display and sound commands 8
displaying and acting on converted
values 189
displaying box on screen in 42
displaying characters 180
displaying error messages 68
displaying list of files 57
displaying status line 167
displaying status messages 166
displaying string variable or string on
screen 41
displaying text on screen 123
displaying user messages 183
displaying variable on screen 71
dividing numbers 58
downloading a file 96
environment variables 94, 135
executing another script 69
executing DOS commands 59
exiting 49
extracting strings 174
FETCHing a SET value 76
file
setting attributes 161
setting date 161
setting time 162
file logging in 115
finding files on disk 81, 82
generating sounds 166

260 =

getting string value from screen 38
getting system dafe in 52
getting text from screen 92, 119, 125
hanging up 101 :
hooking external programs 102
1/O '
writing port data 131
incrementing in 106
inifializing numeric variable in 107
input/output 5
issuing Kermit server commands 111
loading Meta key sets 126
loading the current time 180
math commands 10
memory
measuring free RAM 121
memory manipulation commands 12
merging ASPECT source files 106
moving cursor 49, 50, 51
multiplying numbers 128
opening files 85
pausing 132,175, 185
pausing execution 127
pausing for inactivity 186
PCPLUS.PRM
restoring default parmameters 132
saving default parmameters 132
positioning cursor 38, 114
printer
controlling from a script 133
procedure
marking the beginning 134
processing terminal keystrokes 179
program control 3
reading a specific memory address 121,
122
reading an ASCII character value in a
string 171
reading character from input file 78
reading datfa from a file 88
reading date stamp 95
reading free disk space 57
reading I/O port data 108
reading keystrokes 111,112
reading screen attributes 98
reading screen characters 98
reading string from input file 79
reading the size of 2 file 97
reading time stamp 98

receive data buffer 47

receiving text strings 140

relational testing (greater than or equal)
91

relational testing (greater than) 100

relational testing (less than or equal)
113

relational testing (less than) 118

removing directories 141

removing macro definitions 182

renaming files 138, 139

repositioning a file pointer 88

restoring the video buffer 183

returning current file pointer position
90

returning the modulus 127

returning to Terminal mode 178

running external programs 142

saving the video buffer 184

screen
changing atiributes 136
displaying characters 136
snapshot 163

scrolling screen 61, 144

sending break in 43

sending characters to a remote system
181

sending remote commands 35

SETIMP processing 116, 162

setting a specific memory address 122,
123

setting a string variable 172

SHELLing to DOS 163

sounding an alarm 36

starting Host mode 102

string manipulation 4

string variables
testing for null 130

subtracting 173

switching terminal emulations 64

syntax 24

system commands 12

Terminal emulation commands 12

terminal key equivalents 7

terminating 16, 43, 70

terminating execution and PROCOMM
PLUS 136

testing for end-of-file 67
testing for equality 68

Index

testing for non-equality 129

turning off cursor 50

Turning on cursor in 50

typing a file 182

uploading a file 145

using Meta keys 124

writing character to output file 87

writing data to a file 91

writing formatted strings to an output

file 89

writing I/ O buifer 78

writing string to a file 87
Script file command, executing by remote

host 35
Script file, directory and file control
commands 9

SCROLL script command 9, 144
Segment

convention 34
Semicolon 24
SENDFILE script command 8, 145, 217
SET script command 8, 146

FETCHing a SET value 76
SETFATTR script command 10, 161
SETFDATE script command 10, 161
SETFTIME script command 10, 162
SETJMP script command 3, 116, 162
Setup facility

changing specifications 146
SHELL script command 12, 163, 216
SHL script command 11, 164
SHR script command 11, 165
SNAPSHOT script command 8, 165
SOUND script command 9, 166
STATMSG script command 166
STATREST script command 167
Status line

redisplaying 167
STRCAT script command 4, 167
STRCMP script command 4, 167, 211
STRCPY script command 5, 168
STRFMT script command 5, 169
Strindex

convention 34
String

assigning in script file 168

comparing contents 142

concatenating, in script file 167

convention 34

Index

converting to lowercase 170
converting to upper-case 173
extracting a string 174
formatted, creating in script file 169
gotting from screen 119
getting the length of a string 170
global and local variables 169
Parameter variable 171
reading an ASCII character value 171
reading block from input file 88
setting a specific character 172
setting a string variable 172
text, getting, in script file 92
writing to a file 89
writing to a file in script file 87
STRING script command 134, 169
String, text, getting from screen, in script
file 125
String, text, receiving, in script file 140
String variables
predefined 26
Strings
changing a single character 211
comparing 211
inputting from screen 38
Stringvar
convention 34
STRLEN script command 5, 170
STRLWR script command 5, 170
STRPARM script command 171
STRPEEK script command 5, 171
STRPOKE script command 5, 172
STRSET script command 172
STRUPDT script command 5, 172
STRUPR script command 5, 173
SUBSTR script command 5, 174
Subiraction in script file 173
SUCCESS system variable 192
SUSPEND UNTIL script command 4, 175
SWITCH script command 4, 175
Sx
convention 34
Syntax
conventions 30
Syntax, in script file 24
System, date and time commands, in script
file 12
System variables
definition 26

262 m

@

Terminal

convention 34

resetting 130
Terminal emulation

switching in script file 64
Terminal emulation commands, in script

file 12

Terminal Key Equivalents, in script file 7
Terminal mode

returning from a script 178
TERMINAL script command 4, 178
Terminating

script file 16, 43,70

terminating script files and PROCOMM

- PLUS 136

TERMKEY script command 8, 179
TERMRESET script command 13, 180
TERMWRT script command 7, 180
Time

loading in a script 180

setting file time stamp 162
TIME script command 12, 180
Time stamp

use in seript files 98
Transferring files

common ASPECT questions 217
TRANSMIT script command 7, 181
TYPE script command 9, 182

@

ULINEON script command 13, 182
UNDEF script command 54, 134, 182
Uploading a file 145

Upper-case 173

User-defined constants 27
User-defined variables 27
USERMSG script command 183

%)

Variables
common ASPECT questions 211
integer 212
passing parameters 212
system 26

VIDREST script command 9, 183, 214
VIDSAVE script command 9, 184, 214

m

WAITFCR script command 4, 185
WAITFOR system variable 192
WAITQUIET script command 4, 186
WHEN command

clearing 51
WHEN script command 4, 187
WHILE script command 4, 188
WRITEC script command 7, 189
Writing I/ O buffer in script file 78

X

XOR script command 11, 189

@

ZERQ script command 12, 190

Index

® 263

